Development of novel statistical potentials for protein fold recognition

The need to perform large-scale studies of protein fold recognition, structure prediction and protein–protein interactions has led to novel developments of residue-level minimal models of proteins. A minimum requirement for useful protein force-fields is that they be successful in the recognition of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in structural biology 2004-04, Vol.14 (2), p.225-232
Hauptverfasser: Buchete, N-V, Straub, JE, Thirumalai, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 2
container_start_page 225
container_title Current opinion in structural biology
container_volume 14
creator Buchete, N-V
Straub, JE
Thirumalai, D
description The need to perform large-scale studies of protein fold recognition, structure prediction and protein–protein interactions has led to novel developments of residue-level minimal models of proteins. A minimum requirement for useful protein force-fields is that they be successful in the recognition of native conformations. The balance between the level of detail in describing the specific interactions within proteins and the accuracy obtained using minimal protein models is the focus of many current protein studies. Recent results suggest that the introduction of explicit orientation dependence in a coarse-grained, residue-level model improves the ability of inter-residue potentials to recognize the native state. New statistical and optimization computational algorithms can be used to obtain accurate residue-dependent potentials for use in protein fold recognition and, more importantly, structure prediction.
doi_str_mv 10.1016/j.sbi.2004.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71842092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959440X04000351</els_id><sourcerecordid>71842092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5b335d0ccce4c5a9749796b6bbfe7164b144636bf01e787f5667b8661a3326473</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfZk7ddJ5tsssGT-FWh4EWht7DJzkrKdlM3acF_b0oL3jzNDHnmZfIQck2hoEDF3aoIxhUlAC-AFQDlCZnSWqocGFuekimoSuWcw3JCLkJYAYCgvD4nE1qBYjWrp2T-hDvs_WaNQ8x8lw0-jVmITXQhOtv02cbH9OaaPmSdH7PNmGY3pL5vsxGt_xpcdH64JGddYvDqWGfk8-X543GeL95f3x4fFrllXMW8MoxVLVhrkduqUZIrqYQRxnQoqeCGci6YMB1QlLXsKiGkqYWgDWOl4JLNyO0hNx3yvcUQ9doFi33fDOi3QUta8xJUmUB6AO3oQxix05vRrZvxR1PQe316pZM-vdengemkL-3cHMO3Zo3t38bRVwLuDwCmL-4cjjpYh4PF1iUXUbfe_RP_CymHgIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71842092</pqid></control><display><type>article</type><title>Development of novel statistical potentials for protein fold recognition</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Buchete, N-V ; Straub, JE ; Thirumalai, D</creator><creatorcontrib>Buchete, N-V ; Straub, JE ; Thirumalai, D</creatorcontrib><description>The need to perform large-scale studies of protein fold recognition, structure prediction and protein–protein interactions has led to novel developments of residue-level minimal models of proteins. A minimum requirement for useful protein force-fields is that they be successful in the recognition of native conformations. The balance between the level of detail in describing the specific interactions within proteins and the accuracy obtained using minimal protein models is the focus of many current protein studies. Recent results suggest that the introduction of explicit orientation dependence in a coarse-grained, residue-level model improves the ability of inter-residue potentials to recognize the native state. New statistical and optimization computational algorithms can be used to obtain accurate residue-dependent potentials for use in protein fold recognition and, more importantly, structure prediction.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2004.03.002</identifier><identifier>PMID: 15093838</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Computer Simulation ; Crystallography, X-Ray ; Models, Molecular ; Protein Folding ; Proteins - chemistry ; Thermodynamics</subject><ispartof>Current opinion in structural biology, 2004-04, Vol.14 (2), p.225-232</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5b335d0ccce4c5a9749796b6bbfe7164b144636bf01e787f5667b8661a3326473</citedby><cites>FETCH-LOGICAL-c349t-5b335d0ccce4c5a9749796b6bbfe7164b144636bf01e787f5667b8661a3326473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sbi.2004.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15093838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buchete, N-V</creatorcontrib><creatorcontrib>Straub, JE</creatorcontrib><creatorcontrib>Thirumalai, D</creatorcontrib><title>Development of novel statistical potentials for protein fold recognition</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>The need to perform large-scale studies of protein fold recognition, structure prediction and protein–protein interactions has led to novel developments of residue-level minimal models of proteins. A minimum requirement for useful protein force-fields is that they be successful in the recognition of native conformations. The balance between the level of detail in describing the specific interactions within proteins and the accuracy obtained using minimal protein models is the focus of many current protein studies. Recent results suggest that the introduction of explicit orientation dependence in a coarse-grained, residue-level model improves the ability of inter-residue potentials to recognize the native state. New statistical and optimization computational algorithms can be used to obtain accurate residue-dependent potentials for use in protein fold recognition and, more importantly, structure prediction.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Crystallography, X-Ray</subject><subject>Models, Molecular</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>Thermodynamics</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlZ_gBfZk7ddJ5tsssGT-FWh4EWht7DJzkrKdlM3acF_b0oL3jzNDHnmZfIQck2hoEDF3aoIxhUlAC-AFQDlCZnSWqocGFuekimoSuWcw3JCLkJYAYCgvD4nE1qBYjWrp2T-hDvs_WaNQ8x8lw0-jVmITXQhOtv02cbH9OaaPmSdH7PNmGY3pL5vsxGt_xpcdH64JGddYvDqWGfk8-X543GeL95f3x4fFrllXMW8MoxVLVhrkduqUZIrqYQRxnQoqeCGci6YMB1QlLXsKiGkqYWgDWOl4JLNyO0hNx3yvcUQ9doFi33fDOi3QUta8xJUmUB6AO3oQxix05vRrZvxR1PQe316pZM-vdengemkL-3cHMO3Zo3t38bRVwLuDwCmL-4cjjpYh4PF1iUXUbfe_RP_CymHgIA</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Buchete, N-V</creator><creator>Straub, JE</creator><creator>Thirumalai, D</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Development of novel statistical potentials for protein fold recognition</title><author>Buchete, N-V ; Straub, JE ; Thirumalai, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5b335d0ccce4c5a9749796b6bbfe7164b144636bf01e787f5667b8661a3326473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Crystallography, X-Ray</topic><topic>Models, Molecular</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchete, N-V</creatorcontrib><creatorcontrib>Straub, JE</creatorcontrib><creatorcontrib>Thirumalai, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchete, N-V</au><au>Straub, JE</au><au>Thirumalai, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of novel statistical potentials for protein fold recognition</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>14</volume><issue>2</issue><spage>225</spage><epage>232</epage><pages>225-232</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>The need to perform large-scale studies of protein fold recognition, structure prediction and protein–protein interactions has led to novel developments of residue-level minimal models of proteins. A minimum requirement for useful protein force-fields is that they be successful in the recognition of native conformations. The balance between the level of detail in describing the specific interactions within proteins and the accuracy obtained using minimal protein models is the focus of many current protein studies. Recent results suggest that the introduction of explicit orientation dependence in a coarse-grained, residue-level model improves the ability of inter-residue potentials to recognize the native state. New statistical and optimization computational algorithms can be used to obtain accurate residue-dependent potentials for use in protein fold recognition and, more importantly, structure prediction.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15093838</pmid><doi>10.1016/j.sbi.2004.03.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-440X
ispartof Current opinion in structural biology, 2004-04, Vol.14 (2), p.225-232
issn 0959-440X
1879-033X
language eng
recordid cdi_proquest_miscellaneous_71842092
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Computer Simulation
Crystallography, X-Ray
Models, Molecular
Protein Folding
Proteins - chemistry
Thermodynamics
title Development of novel statistical potentials for protein fold recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20novel%20statistical%20potentials%20for%20protein%20fold%20recognition&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Buchete,%20N-V&rft.date=2004-04-01&rft.volume=14&rft.issue=2&rft.spage=225&rft.epage=232&rft.pages=225-232&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2004.03.002&rft_dat=%3Cproquest_cross%3E71842092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71842092&rft_id=info:pmid/15093838&rft_els_id=S0959440X04000351&rfr_iscdi=true