Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis
Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) bas...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2002-06, Vol.129 (2), p.486-499 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 2 |
container_start_page | 486 |
container_title | Plant physiology (Bethesda) |
container_volume | 129 |
creator | Georg H. H. Borner Sherrier, D. Janine Timothy J. Stevens Isaiah T. Arkin Dupree, Paul |
description | Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of β-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fascilin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling. |
doi_str_mv | 10.1104/pp.010884 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71834607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4280481</jstor_id><sourcerecordid>4280481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-b76499210acd963cad3782ed9150340a853045fe88a1f3c2543bedb095e6ba033</originalsourceid><addsrcrecordid>eNqFkc-r1DAQx4MovvXpwbtI8SB46DrTJG168FAeugoPfAc9hzRN3SzZJCZdof-9kV2ePy6eZpj5zDDf-RLyHGGLCOxtjFtAEII9IBvktKkbzsRDsgEoean3V-RJzgcAQIrsMbnCBloBPd8QeZfMZPVig6_CXO3cqkNeXdyHHPdqsdPqrA_ZLsHVg9f7UPDqLoXFWJ8r66shqdFOIWabt9VQ7YwPR6urwSu3ltpT8mhWLptnl3hNvn54_-XmY337effpZritNee41GPXsr5vEJSe-pZqNdFONGbqkQNloASnwPhshFA4U1300dFMY5Fg2lEBpdfk3XlvPI1HM2njl6ScjMkeVVplUFb-3fF2L7-FHxJbbNuuzL--zKfw_WTyIo82a-Oc8iacsuxQUNbC_0EUDFF0WMBX_4CHcErlLVk2KFrOOYgCvTlDOoWck5nvL0aQv7yVMcqzt4V9-afE3-TFzAK8OAOHvIR032eNACaQ_gQFuKmh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218655508</pqid></control><display><type>article</type><title>Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Georg H. H. Borner ; Sherrier, D. Janine ; Timothy J. Stevens ; Isaiah T. Arkin ; Dupree, Paul</creator><creatorcontrib>Georg H. H. Borner ; Sherrier, D. Janine ; Timothy J. Stevens ; Isaiah T. Arkin ; Dupree, Paul</creatorcontrib><description>Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of β-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fascilin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.010884</identifier><identifier>PMID: 12068095</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Amino acids ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Aspartic Acid Endopeptidases - genetics ; Aspartic Acid Endopeptidases - metabolism ; beta-Glucosidase - genetics ; beta-Glucosidase - metabolism ; Cell walls ; Databases as Topic ; Endopeptidases - genetics ; Endopeptidases - metabolism ; Galactans - genetics ; Galactans - metabolism ; Genome Analysis ; Genome, Plant ; Genomes ; Genomics ; Glucan 1,3-beta-Glucosidase ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Glycosylphosphatidylinositols - genetics ; Glycosylphosphatidylinositols - metabolism ; Lipids ; Membrane proteins ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Peptides ; Phosphoric Diester Hydrolases - genetics ; Phosphoric Diester Hydrolases - metabolism ; Plant cells ; Plant Proteins ; Plants ; Proteins ; Receptors ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Yeasts</subject><ispartof>Plant physiology (Bethesda), 2002-06, Vol.129 (2), p.486-499</ispartof><rights>Copyright 2002 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Physiologists Jun 2002</rights><rights>Copyright © 2002, American Society of Plant Physiologists 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-b76499210acd963cad3782ed9150340a853045fe88a1f3c2543bedb095e6ba033</citedby><cites>FETCH-LOGICAL-c551t-b76499210acd963cad3782ed9150340a853045fe88a1f3c2543bedb095e6ba033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4280481$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4280481$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,883,27907,27908,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12068095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Georg H. H. Borner</creatorcontrib><creatorcontrib>Sherrier, D. Janine</creatorcontrib><creatorcontrib>Timothy J. Stevens</creatorcontrib><creatorcontrib>Isaiah T. Arkin</creatorcontrib><creatorcontrib>Dupree, Paul</creatorcontrib><title>Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of β-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fascilin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.</description><subject>Amino acids</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Aspartic Acid Endopeptidases - genetics</subject><subject>Aspartic Acid Endopeptidases - metabolism</subject><subject>beta-Glucosidase - genetics</subject><subject>beta-Glucosidase - metabolism</subject><subject>Cell walls</subject><subject>Databases as Topic</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - metabolism</subject><subject>Galactans - genetics</subject><subject>Galactans - metabolism</subject><subject>Genome Analysis</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucan 1,3-beta-Glucosidase</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosylphosphatidylinositols - genetics</subject><subject>Glycosylphosphatidylinositols - metabolism</subject><subject>Lipids</subject><subject>Membrane proteins</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Peptides</subject><subject>Phosphoric Diester Hydrolases - genetics</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Plant cells</subject><subject>Plant Proteins</subject><subject>Plants</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Yeasts</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc-r1DAQx4MovvXpwbtI8SB46DrTJG168FAeugoPfAc9hzRN3SzZJCZdof-9kV2ePy6eZpj5zDDf-RLyHGGLCOxtjFtAEII9IBvktKkbzsRDsgEoean3V-RJzgcAQIrsMbnCBloBPd8QeZfMZPVig6_CXO3cqkNeXdyHHPdqsdPqrA_ZLsHVg9f7UPDqLoXFWJ8r66shqdFOIWabt9VQ7YwPR6urwSu3ltpT8mhWLptnl3hNvn54_-XmY337effpZritNee41GPXsr5vEJSe-pZqNdFONGbqkQNloASnwPhshFA4U1300dFMY5Fg2lEBpdfk3XlvPI1HM2njl6ScjMkeVVplUFb-3fF2L7-FHxJbbNuuzL--zKfw_WTyIo82a-Oc8iacsuxQUNbC_0EUDFF0WMBX_4CHcErlLVk2KFrOOYgCvTlDOoWck5nvL0aQv7yVMcqzt4V9-afE3-TFzAK8OAOHvIR032eNACaQ_gQFuKmh</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Georg H. H. Borner</creator><creator>Sherrier, D. Janine</creator><creator>Timothy J. Stevens</creator><creator>Isaiah T. Arkin</creator><creator>Dupree, Paul</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020601</creationdate><title>Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis</title><author>Georg H. H. Borner ; Sherrier, D. Janine ; Timothy J. Stevens ; Isaiah T. Arkin ; Dupree, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-b76499210acd963cad3782ed9150340a853045fe88a1f3c2543bedb095e6ba033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino acids</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Aspartic Acid Endopeptidases - genetics</topic><topic>Aspartic Acid Endopeptidases - metabolism</topic><topic>beta-Glucosidase - genetics</topic><topic>beta-Glucosidase - metabolism</topic><topic>Cell walls</topic><topic>Databases as Topic</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - metabolism</topic><topic>Galactans - genetics</topic><topic>Galactans - metabolism</topic><topic>Genome Analysis</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucan 1,3-beta-Glucosidase</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosylphosphatidylinositols - genetics</topic><topic>Glycosylphosphatidylinositols - metabolism</topic><topic>Lipids</topic><topic>Membrane proteins</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Peptides</topic><topic>Phosphoric Diester Hydrolases - genetics</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Plant cells</topic><topic>Plant Proteins</topic><topic>Plants</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georg H. H. Borner</creatorcontrib><creatorcontrib>Sherrier, D. Janine</creatorcontrib><creatorcontrib>Timothy J. Stevens</creatorcontrib><creatorcontrib>Isaiah T. Arkin</creatorcontrib><creatorcontrib>Dupree, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georg H. H. Borner</au><au>Sherrier, D. Janine</au><au>Timothy J. Stevens</au><au>Isaiah T. Arkin</au><au>Dupree, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>129</volume><issue>2</issue><spage>486</spage><epage>499</epage><pages>486-499</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of β-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fascilin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>12068095</pmid><doi>10.1104/pp.010884</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2002-06, Vol.129 (2), p.486-499 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_71834607 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Amino acids Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Aspartic Acid Endopeptidases - genetics Aspartic Acid Endopeptidases - metabolism beta-Glucosidase - genetics beta-Glucosidase - metabolism Cell walls Databases as Topic Endopeptidases - genetics Endopeptidases - metabolism Galactans - genetics Galactans - metabolism Genome Analysis Genome, Plant Genomes Genomics Glucan 1,3-beta-Glucosidase Glycoproteins - genetics Glycoproteins - metabolism Glycosylphosphatidylinositols - genetics Glycosylphosphatidylinositols - metabolism Lipids Membrane proteins Metalloendopeptidases - genetics Metalloendopeptidases - metabolism Oxidoreductases - genetics Oxidoreductases - metabolism Peptides Phosphoric Diester Hydrolases - genetics Phosphoric Diester Hydrolases - metabolism Plant cells Plant Proteins Plants Proteins Receptors Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Yeasts |
title | Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Glycosylphosphatidylinositol-Anchored%20Proteins%20in%20Arabidopsis.%20A%20Genomic%20Analysis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Georg%20H.%20H.%20Borner&rft.date=2002-06-01&rft.volume=129&rft.issue=2&rft.spage=486&rft.epage=499&rft.pages=486-499&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.010884&rft_dat=%3Cjstor_pubme%3E4280481%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218655508&rft_id=info:pmid/12068095&rft_jstor_id=4280481&rfr_iscdi=true |