Expression and Affinity Purification of Recombinant Proteins from Plants
With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In...
Gespeichert in:
Veröffentlicht in: | Protein expression and purification 2002-06, Vol.25 (1), p.195-202 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 1 |
container_start_page | 195 |
container_title | Protein expression and purification |
container_volume | 25 |
creator | Desai, Urvee A. Sur, Gargi Daunert, Sylvia Babbitt, Ruth Li, Qingshun |
description | With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, β-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the
Agrobacterium-mediated system and the viral-vector-mediated transformation system. |
doi_str_mv | 10.1006/prep.2002.1627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71833971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104659280291627X</els_id><sourcerecordid>71833971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e432648acb7177a40f293ff312a3a32902cb898a6828e8b7e05101d119dc83e73</originalsourceid><addsrcrecordid>eNp1kEFr3DAQhUVoSNIk15xK8Kk3b2ckryQfQ0ibQqBLSM5ClkegsJa2kjc0_74yu9BTTyPmffM08xi7QVghgPy2y7RbcQC-QsnVCbtA6GULXPWflncn23XP9Tn7XMobAKKE9Rk7Rw4KFcoL9vjwp1qUElJsbBybO-9DDPNHs9nn4IOz86Ik3zyTS9MQoo1zs8lpphBL43Oams229soVO_V2W-j6WC_Z6_eHl_vH9unXj5_3d0-tExLnljrBZaetG-oCynbgeS-8F8itsIL3wN2ge22l5pr0oAjWCDgi9qPTgpS4ZF8Pvrucfu-pzGYKxdG2LkFpX4xCLUSvsIKrA-hyKiWTN7scJps_DIJZsjNLdmbJzizZ1YHbo_N-mGj8hx_DqsCXAxBtsSbOuSzTHYDW9aYq64NM9fz3QNkUFyg6GkMmN5sxhf99_RcfsIV5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71833971</pqid></control><display><type>article</type><title>Expression and Affinity Purification of Recombinant Proteins from Plants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>NASA Technical Reports Server</source><creator>Desai, Urvee A. ; Sur, Gargi ; Daunert, Sylvia ; Babbitt, Ruth ; Li, Qingshun</creator><creatorcontrib>Desai, Urvee A. ; Sur, Gargi ; Daunert, Sylvia ; Babbitt, Ruth ; Li, Qingshun</creatorcontrib><description>With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, β-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the
Agrobacterium-mediated system and the viral-vector-mediated transformation system.</description><identifier>ISSN: 1046-5928</identifier><identifier>EISSN: 1096-0279</identifier><identifier>DOI: 10.1006/prep.2002.1627</identifier><identifier>PMID: 12071716</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Inc</publisher><subject>affinity tag ; Blotting, Western ; calmodulin ; Calmodulin - chemistry ; Calmodulin - metabolism ; Chromatography, Affinity ; Edetic Acid - pharmacology ; expression ; Genetic Techniques ; Glucuronidase - metabolism ; isolation ; Life Sciences (General) ; Nicotiana - virology ; Plant Proteins - chemistry ; Plant Proteins - isolation & purification ; Plants, Genetically Modified ; Plasmids - metabolism ; Protein Binding ; Protein Conformation ; Recombinant Fusion Proteins - metabolism ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation & purification ; Rhizobium - metabolism ; RNA, Viral - genetics ; Spectrometry, Fluorescence ; transgenic plants</subject><ispartof>Protein expression and purification, 2002-06, Vol.25 (1), p.195-202</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>Copyright 2002 Elsevier Science (USA).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e432648acb7177a40f293ff312a3a32902cb898a6828e8b7e05101d119dc83e73</citedby><cites>FETCH-LOGICAL-c361t-e432648acb7177a40f293ff312a3a32902cb898a6828e8b7e05101d119dc83e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/prep.2002.1627$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12071716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Desai, Urvee A.</creatorcontrib><creatorcontrib>Sur, Gargi</creatorcontrib><creatorcontrib>Daunert, Sylvia</creatorcontrib><creatorcontrib>Babbitt, Ruth</creatorcontrib><creatorcontrib>Li, Qingshun</creatorcontrib><title>Expression and Affinity Purification of Recombinant Proteins from Plants</title><title>Protein expression and purification</title><addtitle>Protein Expr Purif</addtitle><description>With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, β-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the
Agrobacterium-mediated system and the viral-vector-mediated transformation system.</description><subject>affinity tag</subject><subject>Blotting, Western</subject><subject>calmodulin</subject><subject>Calmodulin - chemistry</subject><subject>Calmodulin - metabolism</subject><subject>Chromatography, Affinity</subject><subject>Edetic Acid - pharmacology</subject><subject>expression</subject><subject>Genetic Techniques</subject><subject>Glucuronidase - metabolism</subject><subject>isolation</subject><subject>Life Sciences (General)</subject><subject>Nicotiana - virology</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - isolation & purification</subject><subject>Plants, Genetically Modified</subject><subject>Plasmids - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Rhizobium - metabolism</subject><subject>RNA, Viral - genetics</subject><subject>Spectrometry, Fluorescence</subject><subject>transgenic plants</subject><issn>1046-5928</issn><issn>1096-0279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNp1kEFr3DAQhUVoSNIk15xK8Kk3b2ckryQfQ0ibQqBLSM5ClkegsJa2kjc0_74yu9BTTyPmffM08xi7QVghgPy2y7RbcQC-QsnVCbtA6GULXPWflncn23XP9Tn7XMobAKKE9Rk7Rw4KFcoL9vjwp1qUElJsbBybO-9DDPNHs9nn4IOz86Ik3zyTS9MQoo1zs8lpphBL43Oams229soVO_V2W-j6WC_Z6_eHl_vH9unXj5_3d0-tExLnljrBZaetG-oCynbgeS-8F8itsIL3wN2ge22l5pr0oAjWCDgi9qPTgpS4ZF8Pvrucfu-pzGYKxdG2LkFpX4xCLUSvsIKrA-hyKiWTN7scJps_DIJZsjNLdmbJzizZ1YHbo_N-mGj8hx_DqsCXAxBtsSbOuSzTHYDW9aYq64NM9fz3QNkUFyg6GkMmN5sxhf99_RcfsIV5</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Desai, Urvee A.</creator><creator>Sur, Gargi</creator><creator>Daunert, Sylvia</creator><creator>Babbitt, Ruth</creator><creator>Li, Qingshun</creator><general>Elsevier Inc</general><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020601</creationdate><title>Expression and Affinity Purification of Recombinant Proteins from Plants</title><author>Desai, Urvee A. ; Sur, Gargi ; Daunert, Sylvia ; Babbitt, Ruth ; Li, Qingshun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e432648acb7177a40f293ff312a3a32902cb898a6828e8b7e05101d119dc83e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>affinity tag</topic><topic>Blotting, Western</topic><topic>calmodulin</topic><topic>Calmodulin - chemistry</topic><topic>Calmodulin - metabolism</topic><topic>Chromatography, Affinity</topic><topic>Edetic Acid - pharmacology</topic><topic>expression</topic><topic>Genetic Techniques</topic><topic>Glucuronidase - metabolism</topic><topic>isolation</topic><topic>Life Sciences (General)</topic><topic>Nicotiana - virology</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - isolation & purification</topic><topic>Plants, Genetically Modified</topic><topic>Plasmids - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Rhizobium - metabolism</topic><topic>RNA, Viral - genetics</topic><topic>Spectrometry, Fluorescence</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Urvee A.</creatorcontrib><creatorcontrib>Sur, Gargi</creatorcontrib><creatorcontrib>Daunert, Sylvia</creatorcontrib><creatorcontrib>Babbitt, Ruth</creatorcontrib><creatorcontrib>Li, Qingshun</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Protein expression and purification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Urvee A.</au><au>Sur, Gargi</au><au>Daunert, Sylvia</au><au>Babbitt, Ruth</au><au>Li, Qingshun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression and Affinity Purification of Recombinant Proteins from Plants</atitle><jtitle>Protein expression and purification</jtitle><addtitle>Protein Expr Purif</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>25</volume><issue>1</issue><spage>195</spage><epage>202</epage><pages>195-202</pages><issn>1046-5928</issn><eissn>1096-0279</eissn><abstract>With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, β-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the
Agrobacterium-mediated system and the viral-vector-mediated transformation system.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Inc</pub><pmid>12071716</pmid><doi>10.1006/prep.2002.1627</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-5928 |
ispartof | Protein expression and purification, 2002-06, Vol.25 (1), p.195-202 |
issn | 1046-5928 1096-0279 |
language | eng |
recordid | cdi_proquest_miscellaneous_71833971 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; NASA Technical Reports Server |
subjects | affinity tag Blotting, Western calmodulin Calmodulin - chemistry Calmodulin - metabolism Chromatography, Affinity Edetic Acid - pharmacology expression Genetic Techniques Glucuronidase - metabolism isolation Life Sciences (General) Nicotiana - virology Plant Proteins - chemistry Plant Proteins - isolation & purification Plants, Genetically Modified Plasmids - metabolism Protein Binding Protein Conformation Recombinant Fusion Proteins - metabolism Recombinant Proteins - chemistry Recombinant Proteins - isolation & purification Rhizobium - metabolism RNA, Viral - genetics Spectrometry, Fluorescence transgenic plants |
title | Expression and Affinity Purification of Recombinant Proteins from Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20and%20Affinity%20Purification%20of%20Recombinant%20Proteins%20from%20Plants&rft.jtitle=Protein%20expression%20and%20purification&rft.au=Desai,%20Urvee%20A.&rft.date=2002-06-01&rft.volume=25&rft.issue=1&rft.spage=195&rft.epage=202&rft.pages=195-202&rft.issn=1046-5928&rft.eissn=1096-0279&rft_id=info:doi/10.1006/prep.2002.1627&rft_dat=%3Cproquest_cross%3E71833971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71833971&rft_id=info:pmid/12071716&rft_els_id=S104659280291627X&rfr_iscdi=true |