Predicting Gene Expression from Sequence
We describe a systematic genome-wide approach for learning the complex combinatorial code underlying gene expression. Our probabilistic approach identifies local DNA-sequence elements and the positional and combinatorial constraints that determine their context-dependent role in transcriptional regu...
Gespeichert in:
Veröffentlicht in: | Cell 2004-04, Vol.117 (2), p.185-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | Cell |
container_volume | 117 |
creator | Beer, Michael A. Tavazoie, Saeed |
description | We describe a systematic genome-wide approach for learning the complex combinatorial code underlying gene expression. Our probabilistic approach identifies local DNA-sequence elements and the positional and combinatorial constraints that determine their context-dependent role in transcriptional regulation. The inferred regulatory rules correctly predict expression patterns for 73% of genes in Saccharomyces cerevisiae, utilizing microarray expression data and sequences in the 800 bp upstream of genes. Application to Caenorhabditis elegans identifies predictive regulatory elements and combinatorial rules that control the phased temporal expression of transcription factors, histones, and germline specific genes. Successful prediction requires diverse and complex rules utilizing AND, OR, and NOT logic, with significant constraints on motif strength, orientation, and relative position. This system generates a large number of mechanistic hypotheses for focused experimental validation, and establishes a predictive dynamical framework for understanding cellular behavior from genomic sequence. |
doi_str_mv | 10.1016/S0092-8674(04)00304-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71832958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867404003046</els_id><sourcerecordid>17942814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-63c22ea5028f8a46ada6d27208940c2c599e0910087223089ad33773d74608683</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_gtKT1MPqJJvPk0ipVSgoVM9hTWYl0t2tyVb037trix6FgYHhmXmHh5BTCpcUqLxaAhiWaan4BPgFQA48k3tkSMGojFPF9snwFxmQo5TeAEALIQ7JgArQnAk1JJPHiD64NtSv4znWOJ59riOmFJp6XMamGi_xfYO1w2NyUBarhCe7PiLPt7On6V22eJjfT28WmeOGtpnMHWNYCGC61AWXhS-kZ4qBNhwcc8IYBEO7TxRjeTctfJ4rlXvFJWip8xE5395dx6ZLTq2tQnK4WhU1NptkFdU5M-J_kCrDmaa8A8UWdLFJKWJp1zFURfyyFGzv0v64tL0oC131Lq3s9s52AZuXCv3f1k5eB1xvAex8fASMNrnQu_Ihomutb8I_Ed_5AIAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17942814</pqid></control><display><type>article</type><title>Predicting Gene Expression from Sequence</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Beer, Michael A. ; Tavazoie, Saeed</creator><creatorcontrib>Beer, Michael A. ; Tavazoie, Saeed</creatorcontrib><description>We describe a systematic genome-wide approach for learning the complex combinatorial code underlying gene expression. Our probabilistic approach identifies local DNA-sequence elements and the positional and combinatorial constraints that determine their context-dependent role in transcriptional regulation. The inferred regulatory rules correctly predict expression patterns for 73% of genes in Saccharomyces cerevisiae, utilizing microarray expression data and sequences in the 800 bp upstream of genes. Application to Caenorhabditis elegans identifies predictive regulatory elements and combinatorial rules that control the phased temporal expression of transcription factors, histones, and germline specific genes. Successful prediction requires diverse and complex rules utilizing AND, OR, and NOT logic, with significant constraints on motif strength, orientation, and relative position. This system generates a large number of mechanistic hypotheses for focused experimental validation, and establishes a predictive dynamical framework for understanding cellular behavior from genomic sequence.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/S0092-8674(04)00304-6</identifier><identifier>PMID: 15084257</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Base Sequence - genetics ; Bayes Theorem ; Caenorhabditis elegans ; Gene Expression Profiling - methods ; Gene Expression Regulation - genetics ; Genes - genetics ; Genome ; Models, Statistical ; Multigene Family - genetics ; Oligonucleotide Array Sequence Analysis ; Predictive Value of Tests ; Recombination, Genetic - genetics ; Reproducibility of Results ; Saccharomyces cerevisiae ; Transcription Factors - genetics</subject><ispartof>Cell, 2004-04, Vol.117 (2), p.185-198</ispartof><rights>2004 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-63c22ea5028f8a46ada6d27208940c2c599e0910087223089ad33773d74608683</citedby><cites>FETCH-LOGICAL-c491t-63c22ea5028f8a46ada6d27208940c2c599e0910087223089ad33773d74608683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867404003046$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15084257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beer, Michael A.</creatorcontrib><creatorcontrib>Tavazoie, Saeed</creatorcontrib><title>Predicting Gene Expression from Sequence</title><title>Cell</title><addtitle>Cell</addtitle><description>We describe a systematic genome-wide approach for learning the complex combinatorial code underlying gene expression. Our probabilistic approach identifies local DNA-sequence elements and the positional and combinatorial constraints that determine their context-dependent role in transcriptional regulation. The inferred regulatory rules correctly predict expression patterns for 73% of genes in Saccharomyces cerevisiae, utilizing microarray expression data and sequences in the 800 bp upstream of genes. Application to Caenorhabditis elegans identifies predictive regulatory elements and combinatorial rules that control the phased temporal expression of transcription factors, histones, and germline specific genes. Successful prediction requires diverse and complex rules utilizing AND, OR, and NOT logic, with significant constraints on motif strength, orientation, and relative position. This system generates a large number of mechanistic hypotheses for focused experimental validation, and establishes a predictive dynamical framework for understanding cellular behavior from genomic sequence.</description><subject>Animals</subject><subject>Base Sequence - genetics</subject><subject>Bayes Theorem</subject><subject>Caenorhabditis elegans</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genes - genetics</subject><subject>Genome</subject><subject>Models, Statistical</subject><subject>Multigene Family - genetics</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Predictive Value of Tests</subject><subject>Recombination, Genetic - genetics</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae</subject><subject>Transcription Factors - genetics</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_gtKT1MPqJJvPk0ipVSgoVM9hTWYl0t2tyVb037trix6FgYHhmXmHh5BTCpcUqLxaAhiWaan4BPgFQA48k3tkSMGojFPF9snwFxmQo5TeAEALIQ7JgArQnAk1JJPHiD64NtSv4znWOJ59riOmFJp6XMamGi_xfYO1w2NyUBarhCe7PiLPt7On6V22eJjfT28WmeOGtpnMHWNYCGC61AWXhS-kZ4qBNhwcc8IYBEO7TxRjeTctfJ4rlXvFJWip8xE5395dx6ZLTq2tQnK4WhU1NptkFdU5M-J_kCrDmaa8A8UWdLFJKWJp1zFURfyyFGzv0v64tL0oC131Lq3s9s52AZuXCv3f1k5eB1xvAex8fASMNrnQu_Ihomutb8I_Ed_5AIAM</recordid><startdate>20040416</startdate><enddate>20040416</enddate><creator>Beer, Michael A.</creator><creator>Tavazoie, Saeed</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040416</creationdate><title>Predicting Gene Expression from Sequence</title><author>Beer, Michael A. ; Tavazoie, Saeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-63c22ea5028f8a46ada6d27208940c2c599e0910087223089ad33773d74608683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Base Sequence - genetics</topic><topic>Bayes Theorem</topic><topic>Caenorhabditis elegans</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genes - genetics</topic><topic>Genome</topic><topic>Models, Statistical</topic><topic>Multigene Family - genetics</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Predictive Value of Tests</topic><topic>Recombination, Genetic - genetics</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beer, Michael A.</creatorcontrib><creatorcontrib>Tavazoie, Saeed</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beer, Michael A.</au><au>Tavazoie, Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Gene Expression from Sequence</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2004-04-16</date><risdate>2004</risdate><volume>117</volume><issue>2</issue><spage>185</spage><epage>198</epage><pages>185-198</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>We describe a systematic genome-wide approach for learning the complex combinatorial code underlying gene expression. Our probabilistic approach identifies local DNA-sequence elements and the positional and combinatorial constraints that determine their context-dependent role in transcriptional regulation. The inferred regulatory rules correctly predict expression patterns for 73% of genes in Saccharomyces cerevisiae, utilizing microarray expression data and sequences in the 800 bp upstream of genes. Application to Caenorhabditis elegans identifies predictive regulatory elements and combinatorial rules that control the phased temporal expression of transcription factors, histones, and germline specific genes. Successful prediction requires diverse and complex rules utilizing AND, OR, and NOT logic, with significant constraints on motif strength, orientation, and relative position. This system generates a large number of mechanistic hypotheses for focused experimental validation, and establishes a predictive dynamical framework for understanding cellular behavior from genomic sequence.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15084257</pmid><doi>10.1016/S0092-8674(04)00304-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2004-04, Vol.117 (2), p.185-198 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_71832958 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Base Sequence - genetics Bayes Theorem Caenorhabditis elegans Gene Expression Profiling - methods Gene Expression Regulation - genetics Genes - genetics Genome Models, Statistical Multigene Family - genetics Oligonucleotide Array Sequence Analysis Predictive Value of Tests Recombination, Genetic - genetics Reproducibility of Results Saccharomyces cerevisiae Transcription Factors - genetics |
title | Predicting Gene Expression from Sequence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Gene%20Expression%20from%20Sequence&rft.jtitle=Cell&rft.au=Beer,%20Michael%20A.&rft.date=2004-04-16&rft.volume=117&rft.issue=2&rft.spage=185&rft.epage=198&rft.pages=185-198&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/S0092-8674(04)00304-6&rft_dat=%3Cproquest_cross%3E17942814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17942814&rft_id=info:pmid/15084257&rft_els_id=S0092867404003046&rfr_iscdi=true |