Characterization of Silica-Based Monoliths with Bimodal Pore Size Distribution
Band dispersion was studied and the retention thermodynamics addressed for insulin and angiotensin II on C18 silica monoliths with a bimodal pore size distribution, covering linear mobile-phase velocities up to 1 cm/s and different temperatures. These data suggest that the influence of average colum...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2002-06, Vol.74 (11), p.2470-2477 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2477 |
---|---|
container_issue | 11 |
container_start_page | 2470 |
container_title | Analytical chemistry (Washington) |
container_volume | 74 |
creator | Leinweber, Felix C Lubda, Dieter Cabrera, Karin Tallarek, Ulrich |
description | Band dispersion was studied and the retention thermodynamics addressed for insulin and angiotensin II on C18 silica monoliths with a bimodal pore size distribution, covering linear mobile-phase velocities up to 1 cm/s and different temperatures. These data suggest that the influence of average column pressure on retention (between 0 and 10 MPa) is not negligible. Plate height curves were interpreted with the van Deemter equation by assuming an independent contribution from mechanical and nonmechanical dispersion mechanisms. This analysis revealed diffusion-limited mass transfer in the mesoporous silica skeleton which, in turn, allowed us to calculate an equivalent dispersion particle diameter (d disp = 3 μm) using the C-term parameter of the van Deemter equation. The resulting superposition of reduced plate height curves for monolithic and particulate beds confirmed that this view presents an adequate analogy. The macroporous interskeleton network responsible for the hydraulic permeability of a monolith was translated to the interparticle pore space of particulate beds, and an equivalent permeability particle diameter (d perm = 15 μm) was obtained by scaling based on the Kozeny−Carman equation. |
doi_str_mv | 10.1021/ac011163o |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71831963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71831963</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-55e5463972951022eee96082e3fd6cb07c06e46eb18dd788bb7ced9823c52a703</originalsourceid><addsrcrecordid>eNpl0F1rFDEUBuAgil2rF_4BGQQFL0ZPks3HXLbrJ9ZaaQXxJpzJnKGps5OazKD215uyyy7oTXKR57zkvIw95vCSg-Cv0APnXMt4hy24ElBra8VdtgAAWQsDcMAe5HwFRQHX99kBF6AbIdSCna4uMaGfKIUbnEIcq9hX52EIHutjzNRVn-IYhzBd5upXOavjsI4dDtVZTFTgDVWvQ55SaOfb6YfsXo9Dpkfb-5B9ffvmYvW-Pvn87sPq6KTGJeipVorUUsvGiEaVDQQRNRqsINl32rdgPGhaamq57TpjbdsaT11jhfRKoAF5yJ5vcq9T_DlTntw6ZE_DgCPFOTvDreSNlgU-_QdexTmN5W9OcGNNyVIFvdggn2LOiXp3ncIa0x_Hwd027HYNF_tkGzi3a-r2cltpAc-2ALPHoU84-pD3ThouFTfF1RtX6qPfu3dMP5w20ih3cXbuvsnm4_cvy9MytstFn_dL_P_Bv2PFnEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217877035</pqid></control><display><type>article</type><title>Characterization of Silica-Based Monoliths with Bimodal Pore Size Distribution</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Leinweber, Felix C ; Lubda, Dieter ; Cabrera, Karin ; Tallarek, Ulrich</creator><creatorcontrib>Leinweber, Felix C ; Lubda, Dieter ; Cabrera, Karin ; Tallarek, Ulrich</creatorcontrib><description>Band dispersion was studied and the retention thermodynamics addressed for insulin and angiotensin II on C18 silica monoliths with a bimodal pore size distribution, covering linear mobile-phase velocities up to 1 cm/s and different temperatures. These data suggest that the influence of average column pressure on retention (between 0 and 10 MPa) is not negligible. Plate height curves were interpreted with the van Deemter equation by assuming an independent contribution from mechanical and nonmechanical dispersion mechanisms. This analysis revealed diffusion-limited mass transfer in the mesoporous silica skeleton which, in turn, allowed us to calculate an equivalent dispersion particle diameter (d disp = 3 μm) using the C-term parameter of the van Deemter equation. The resulting superposition of reduced plate height curves for monolithic and particulate beds confirmed that this view presents an adequate analogy. The macroporous interskeleton network responsible for the hydraulic permeability of a monolith was translated to the interparticle pore space of particulate beds, and an equivalent permeability particle diameter (d perm = 15 μm) was obtained by scaling based on the Kozeny−Carman equation.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac011163o</identifier><identifier>PMID: 12069225</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Insulin ; Other chromatographic methods ; Silica</subject><ispartof>Analytical chemistry (Washington), 2002-06, Vol.74 (11), p.2470-2477</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 1, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-55e5463972951022eee96082e3fd6cb07c06e46eb18dd788bb7ced9823c52a703</citedby><cites>FETCH-LOGICAL-a406t-55e5463972951022eee96082e3fd6cb07c06e46eb18dd788bb7ced9823c52a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac011163o$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac011163o$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13713517$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12069225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leinweber, Felix C</creatorcontrib><creatorcontrib>Lubda, Dieter</creatorcontrib><creatorcontrib>Cabrera, Karin</creatorcontrib><creatorcontrib>Tallarek, Ulrich</creatorcontrib><title>Characterization of Silica-Based Monoliths with Bimodal Pore Size Distribution</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Band dispersion was studied and the retention thermodynamics addressed for insulin and angiotensin II on C18 silica monoliths with a bimodal pore size distribution, covering linear mobile-phase velocities up to 1 cm/s and different temperatures. These data suggest that the influence of average column pressure on retention (between 0 and 10 MPa) is not negligible. Plate height curves were interpreted with the van Deemter equation by assuming an independent contribution from mechanical and nonmechanical dispersion mechanisms. This analysis revealed diffusion-limited mass transfer in the mesoporous silica skeleton which, in turn, allowed us to calculate an equivalent dispersion particle diameter (d disp = 3 μm) using the C-term parameter of the van Deemter equation. The resulting superposition of reduced plate height curves for monolithic and particulate beds confirmed that this view presents an adequate analogy. The macroporous interskeleton network responsible for the hydraulic permeability of a monolith was translated to the interparticle pore space of particulate beds, and an equivalent permeability particle diameter (d perm = 15 μm) was obtained by scaling based on the Kozeny−Carman equation.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Insulin</subject><subject>Other chromatographic methods</subject><subject>Silica</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpl0F1rFDEUBuAgil2rF_4BGQQFL0ZPks3HXLbrJ9ZaaQXxJpzJnKGps5OazKD215uyyy7oTXKR57zkvIw95vCSg-Cv0APnXMt4hy24ElBra8VdtgAAWQsDcMAe5HwFRQHX99kBF6AbIdSCna4uMaGfKIUbnEIcq9hX52EIHutjzNRVn-IYhzBd5upXOavjsI4dDtVZTFTgDVWvQ55SaOfb6YfsXo9Dpkfb-5B9ffvmYvW-Pvn87sPq6KTGJeipVorUUsvGiEaVDQQRNRqsINl32rdgPGhaamq57TpjbdsaT11jhfRKoAF5yJ5vcq9T_DlTntw6ZE_DgCPFOTvDreSNlgU-_QdexTmN5W9OcGNNyVIFvdggn2LOiXp3ncIa0x_Hwd027HYNF_tkGzi3a-r2cltpAc-2ALPHoU84-pD3ThouFTfF1RtX6qPfu3dMP5w20ih3cXbuvsnm4_cvy9MytstFn_dL_P_Bv2PFnEU</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Leinweber, Felix C</creator><creator>Lubda, Dieter</creator><creator>Cabrera, Karin</creator><creator>Tallarek, Ulrich</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020601</creationdate><title>Characterization of Silica-Based Monoliths with Bimodal Pore Size Distribution</title><author>Leinweber, Felix C ; Lubda, Dieter ; Cabrera, Karin ; Tallarek, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-55e5463972951022eee96082e3fd6cb07c06e46eb18dd788bb7ced9823c52a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Insulin</topic><topic>Other chromatographic methods</topic><topic>Silica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leinweber, Felix C</creatorcontrib><creatorcontrib>Lubda, Dieter</creatorcontrib><creatorcontrib>Cabrera, Karin</creatorcontrib><creatorcontrib>Tallarek, Ulrich</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leinweber, Felix C</au><au>Lubda, Dieter</au><au>Cabrera, Karin</au><au>Tallarek, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Silica-Based Monoliths with Bimodal Pore Size Distribution</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>74</volume><issue>11</issue><spage>2470</spage><epage>2477</epage><pages>2470-2477</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Band dispersion was studied and the retention thermodynamics addressed for insulin and angiotensin II on C18 silica monoliths with a bimodal pore size distribution, covering linear mobile-phase velocities up to 1 cm/s and different temperatures. These data suggest that the influence of average column pressure on retention (between 0 and 10 MPa) is not negligible. Plate height curves were interpreted with the van Deemter equation by assuming an independent contribution from mechanical and nonmechanical dispersion mechanisms. This analysis revealed diffusion-limited mass transfer in the mesoporous silica skeleton which, in turn, allowed us to calculate an equivalent dispersion particle diameter (d disp = 3 μm) using the C-term parameter of the van Deemter equation. The resulting superposition of reduced plate height curves for monolithic and particulate beds confirmed that this view presents an adequate analogy. The macroporous interskeleton network responsible for the hydraulic permeability of a monolith was translated to the interparticle pore space of particulate beds, and an equivalent permeability particle diameter (d perm = 15 μm) was obtained by scaling based on the Kozeny−Carman equation.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12069225</pmid><doi>10.1021/ac011163o</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2002-06, Vol.74 (11), p.2470-2477 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_71831963 |
source | ACS Journals: American Chemical Society Web Editions |
subjects | Analytical chemistry Chemistry Chromatographic methods and physical methods associated with chromatography Exact sciences and technology Insulin Other chromatographic methods Silica |
title | Characterization of Silica-Based Monoliths with Bimodal Pore Size Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Silica-Based%20Monoliths%20with%20Bimodal%20Pore%20Size%20Distribution&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Leinweber,%20Felix%20C&rft.date=2002-06-01&rft.volume=74&rft.issue=11&rft.spage=2470&rft.epage=2477&rft.pages=2470-2477&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac011163o&rft_dat=%3Cproquest_cross%3E71831963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217877035&rft_id=info:pmid/12069225&rfr_iscdi=true |