Structure and Nucleotide-Dependent Changes of Thick Filaments in Relaxed and Rigor Plaice Fin Muscle

The myosin crossbridge array, positions of non-crossbridge densities on the backbone, and the A-band “end filaments” have been compared in chemically skinned, unfixed, uncryoprotected relaxed, and rigor plaice fin muscles using the freeze-fracture, deep-etch, rotary-shadowing technique. The images p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2002-01, Vol.137 (1-2), p.164-175
Hauptverfasser: Cantino, M.E., Chew, M.W.K., Luther, P.K., Morris, E., Squire, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The myosin crossbridge array, positions of non-crossbridge densities on the backbone, and the A-band “end filaments” have been compared in chemically skinned, unfixed, uncryoprotected relaxed, and rigor plaice fin muscles using the freeze-fracture, deep-etch, rotary-shadowing technique. The images provide a direct demonstration of the helical packing of the myosin heads in situ in relaxed muscle and show rearrangements of the myosin heads, and possibly of other myosin filament proteins, when the heads lose ATP on going into rigor. In the H-zone these changes are consistent with crossbridge changes previously shown by others using freeze-substitution. In addition, new evidence is presented of protein rearrangements in the M-region (bare zone), associated with the transition from the relaxed to the rigor state, including a 27-nm increase in the apparent width of the M-region. This is interpreted as being mostly due to loss or rearrangement of a nonmyosin (M9) protein component at the M-region edge. The structure and titin periodicity of the end-filaments are described, as are suggestions of titin structure on the myosin filament backbone.
ISSN:1047-8477
1095-8657
DOI:10.1006/jsbi.2002.4474