Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays

Motivation: Recent years' exponential increase in DNA microarrays experiments has motivated the development of many signal quantitation (SQ) algorithms. These algorithms perform various transformations on the actual measurements aimed to enable researchers to compare readings of different genes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2004-04, Vol.20 (6), p.839-846
Hauptverfasser: Barash, Yoseph, Dehan, Elinor, Krupsky, Meir, Franklin, Wilbur, Geraci, Marc, Friedman, Nir, Kaminski, Naftali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue 6
container_start_page 839
container_title Bioinformatics
container_volume 20
creator Barash, Yoseph
Dehan, Elinor
Krupsky, Meir
Franklin, Wilbur
Geraci, Marc
Friedman, Nir
Kaminski, Naftali
description Motivation: Recent years' exponential increase in DNA microarrays experiments has motivated the development of many signal quantitation (SQ) algorithms. These algorithms perform various transformations on the actual measurements aimed to enable researchers to compare readings of different genes quantitatively within one experiment and across separate experiments. However, it is relatively unclear whether there is a ‘best’ algorithm to quantitate microarray data. The ability to compare and assess such algorithms is crucial for any downstream analysis. In this work, we suggest a methodology for comparing different signal quantitation algorithms for gene expression data. Our aim is to enable researchers to compare the effect of different SQ algorithms on the specific dataset they are dealing with. We combine two kinds of tests to assess the effect of an SQ algorithm in terms of signal to noise ratio. To assess noise, we exploit redundancy within the experimental dataset to test the variability of a given SQ algorithm output. For the effect of the SQ on the signal we evaluate the overabundance of differentially expressed genes using various statistical significance tests. Results: We demonstrate our analysis approach with three SQ algorithms for oligonucleotide microarrays. We compare the results of using the dChip software and the RMAExpress software to the ones obtained by using the standard Affymetrix MAS5 on a dataset containing pairs of repeated hybridizations. Our analysis suggests that dChip is more robust and stable than the MAS5 tools for about 60% of the genes while RMAExpress is able to achieve an even greater improvement in terms of signal to noise, for more than 95% of the genes. Availability: The algorithms used to evaluate differentially expressed genes and their statistical overabundance can be found at http://www.cs.huji.ac.il/labs/compbio/scoregenes/
doi_str_mv 10.1093/bioinformatics/btg487
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71829537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71829537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-168cb06444b0de0b55d727ebd76aeb537d50b9cc7dfeff6e356ec8892d9de7d13</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoMotlZ_gjIIejc2mXxfylJba6EIilIvQj7X1JnJNsmI--9N2aVFb3p1DpznvOfjBeAlgu8QlPjYxBTnkPKka7Tl2NQ1EfwROESEwX6AVD5uOWa8JwLiA_CslGsIKSKEPAUHiHCKpBSH4McqTRudm8hv3-lZj9sSS5dCp8d1yrH-nErXpnQlrluxu1n0XGNteJq7kNPUpTGu07zY0acane-maHPSOetteQ6eBD0W_2Ifj8DXDydfVmf9xeXpx9X7i94SLmqPmLAGsraZgc5DQ6njA_fGcaa9oZg7Co20lrvgQ2AeU-atEHJw0nnuED4Cb3e6m5xuFl-qmmKxfhz17NNSFEdikE3nQRBxyQUTrIGv_wOv05LbAxojBWOUDbdj6Q5qB5eSfVCbHCedtwpBdeuR-tcjtfOo9b3aiy9m8u6-a29KA97sAV2sHkPWs43lnqMcMoZJ4_odF0v1f-7qOv9SjGNO1dn3K_VpoOffTuFndYX_Amdfsag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198665621</pqid></control><display><type>article</type><title>Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Barash, Yoseph ; Dehan, Elinor ; Krupsky, Meir ; Franklin, Wilbur ; Geraci, Marc ; Friedman, Nir ; Kaminski, Naftali</creator><creatorcontrib>Barash, Yoseph ; Dehan, Elinor ; Krupsky, Meir ; Franklin, Wilbur ; Geraci, Marc ; Friedman, Nir ; Kaminski, Naftali</creatorcontrib><description>Motivation: Recent years' exponential increase in DNA microarrays experiments has motivated the development of many signal quantitation (SQ) algorithms. These algorithms perform various transformations on the actual measurements aimed to enable researchers to compare readings of different genes quantitatively within one experiment and across separate experiments. However, it is relatively unclear whether there is a ‘best’ algorithm to quantitate microarray data. The ability to compare and assess such algorithms is crucial for any downstream analysis. In this work, we suggest a methodology for comparing different signal quantitation algorithms for gene expression data. Our aim is to enable researchers to compare the effect of different SQ algorithms on the specific dataset they are dealing with. We combine two kinds of tests to assess the effect of an SQ algorithm in terms of signal to noise ratio. To assess noise, we exploit redundancy within the experimental dataset to test the variability of a given SQ algorithm output. For the effect of the SQ on the signal we evaluate the overabundance of differentially expressed genes using various statistical significance tests. Results: We demonstrate our analysis approach with three SQ algorithms for oligonucleotide microarrays. We compare the results of using the dChip software and the RMAExpress software to the ones obtained by using the standard Affymetrix MAS5 on a dataset containing pairs of repeated hybridizations. Our analysis suggests that dChip is more robust and stable than the MAS5 tools for about 60% of the genes while RMAExpress is able to achieve an even greater improvement in terms of signal to noise, for more than 95% of the genes. Availability: The algorithms used to evaluate differentially expressed genes and their statistical overabundance can be found at http://www.cs.huji.ac.il/labs/compbio/scoregenes/</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btg487</identifier><identifier>PMID: 14751998</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Benchmarking - methods ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Array Sequence Analysis - standards ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Analysis, DNA - methods ; Software Validation</subject><ispartof>Bioinformatics, 2004-04, Vol.20 (6), p.839-846</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 12, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-168cb06444b0de0b55d727ebd76aeb537d50b9cc7dfeff6e356ec8892d9de7d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15706634$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14751998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barash, Yoseph</creatorcontrib><creatorcontrib>Dehan, Elinor</creatorcontrib><creatorcontrib>Krupsky, Meir</creatorcontrib><creatorcontrib>Franklin, Wilbur</creatorcontrib><creatorcontrib>Geraci, Marc</creatorcontrib><creatorcontrib>Friedman, Nir</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><title>Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Recent years' exponential increase in DNA microarrays experiments has motivated the development of many signal quantitation (SQ) algorithms. These algorithms perform various transformations on the actual measurements aimed to enable researchers to compare readings of different genes quantitatively within one experiment and across separate experiments. However, it is relatively unclear whether there is a ‘best’ algorithm to quantitate microarray data. The ability to compare and assess such algorithms is crucial for any downstream analysis. In this work, we suggest a methodology for comparing different signal quantitation algorithms for gene expression data. Our aim is to enable researchers to compare the effect of different SQ algorithms on the specific dataset they are dealing with. We combine two kinds of tests to assess the effect of an SQ algorithm in terms of signal to noise ratio. To assess noise, we exploit redundancy within the experimental dataset to test the variability of a given SQ algorithm output. For the effect of the SQ on the signal we evaluate the overabundance of differentially expressed genes using various statistical significance tests. Results: We demonstrate our analysis approach with three SQ algorithms for oligonucleotide microarrays. We compare the results of using the dChip software and the RMAExpress software to the ones obtained by using the standard Affymetrix MAS5 on a dataset containing pairs of repeated hybridizations. Our analysis suggests that dChip is more robust and stable than the MAS5 tools for about 60% of the genes while RMAExpress is able to achieve an even greater improvement in terms of signal to noise, for more than 95% of the genes. Availability: The algorithms used to evaluate differentially expressed genes and their statistical overabundance can be found at http://www.cs.huji.ac.il/labs/compbio/scoregenes/</description><subject>Algorithms</subject><subject>Benchmarking - methods</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Array Sequence Analysis - standards</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software Validation</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoMotlZ_gjIIejc2mXxfylJba6EIilIvQj7X1JnJNsmI--9N2aVFb3p1DpznvOfjBeAlgu8QlPjYxBTnkPKka7Tl2NQ1EfwROESEwX6AVD5uOWa8JwLiA_CslGsIKSKEPAUHiHCKpBSH4McqTRudm8hv3-lZj9sSS5dCp8d1yrH-nErXpnQlrluxu1n0XGNteJq7kNPUpTGu07zY0acane-maHPSOetteQ6eBD0W_2Ifj8DXDydfVmf9xeXpx9X7i94SLmqPmLAGsraZgc5DQ6njA_fGcaa9oZg7Co20lrvgQ2AeU-atEHJw0nnuED4Cb3e6m5xuFl-qmmKxfhz17NNSFEdikE3nQRBxyQUTrIGv_wOv05LbAxojBWOUDbdj6Q5qB5eSfVCbHCedtwpBdeuR-tcjtfOo9b3aiy9m8u6-a29KA97sAV2sHkPWs43lnqMcMoZJ4_odF0v1f-7qOv9SjGNO1dn3K_VpoOffTuFndYX_Amdfsag</recordid><startdate>20040412</startdate><enddate>20040412</enddate><creator>Barash, Yoseph</creator><creator>Dehan, Elinor</creator><creator>Krupsky, Meir</creator><creator>Franklin, Wilbur</creator><creator>Geraci, Marc</creator><creator>Friedman, Nir</creator><creator>Kaminski, Naftali</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040412</creationdate><title>Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays</title><author>Barash, Yoseph ; Dehan, Elinor ; Krupsky, Meir ; Franklin, Wilbur ; Geraci, Marc ; Friedman, Nir ; Kaminski, Naftali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-168cb06444b0de0b55d727ebd76aeb537d50b9cc7dfeff6e356ec8892d9de7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Benchmarking - methods</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Array Sequence Analysis - standards</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software Validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barash, Yoseph</creatorcontrib><creatorcontrib>Dehan, Elinor</creatorcontrib><creatorcontrib>Krupsky, Meir</creatorcontrib><creatorcontrib>Franklin, Wilbur</creatorcontrib><creatorcontrib>Geraci, Marc</creatorcontrib><creatorcontrib>Friedman, Nir</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barash, Yoseph</au><au>Dehan, Elinor</au><au>Krupsky, Meir</au><au>Franklin, Wilbur</au><au>Geraci, Marc</au><au>Friedman, Nir</au><au>Kaminski, Naftali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2004-04-12</date><risdate>2004</risdate><volume>20</volume><issue>6</issue><spage>839</spage><epage>846</epage><pages>839-846</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Recent years' exponential increase in DNA microarrays experiments has motivated the development of many signal quantitation (SQ) algorithms. These algorithms perform various transformations on the actual measurements aimed to enable researchers to compare readings of different genes quantitatively within one experiment and across separate experiments. However, it is relatively unclear whether there is a ‘best’ algorithm to quantitate microarray data. The ability to compare and assess such algorithms is crucial for any downstream analysis. In this work, we suggest a methodology for comparing different signal quantitation algorithms for gene expression data. Our aim is to enable researchers to compare the effect of different SQ algorithms on the specific dataset they are dealing with. We combine two kinds of tests to assess the effect of an SQ algorithm in terms of signal to noise ratio. To assess noise, we exploit redundancy within the experimental dataset to test the variability of a given SQ algorithm output. For the effect of the SQ on the signal we evaluate the overabundance of differentially expressed genes using various statistical significance tests. Results: We demonstrate our analysis approach with three SQ algorithms for oligonucleotide microarrays. We compare the results of using the dChip software and the RMAExpress software to the ones obtained by using the standard Affymetrix MAS5 on a dataset containing pairs of repeated hybridizations. Our analysis suggests that dChip is more robust and stable than the MAS5 tools for about 60% of the genes while RMAExpress is able to achieve an even greater improvement in terms of signal to noise, for more than 95% of the genes. Availability: The algorithms used to evaluate differentially expressed genes and their statistical overabundance can be found at http://www.cs.huji.ac.il/labs/compbio/scoregenes/</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>14751998</pmid><doi>10.1093/bioinformatics/btg487</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2004-04, Vol.20 (6), p.839-846
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_71829537
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Benchmarking - methods
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - standards
Reproducibility of Results
Sensitivity and Specificity
Sequence Analysis, DNA - methods
Software Validation
title Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20algorithms%20for%20signal%20quantitation%20from%20oligonucleotide%20microarrays&rft.jtitle=Bioinformatics&rft.au=Barash,%20Yoseph&rft.date=2004-04-12&rft.volume=20&rft.issue=6&rft.spage=839&rft.epage=846&rft.pages=839-846&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btg487&rft_dat=%3Cproquest_cross%3E71829537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198665621&rft_id=info:pmid/14751998&rfr_iscdi=true