Vitamin A and vitamin A palmitate stability over time and under UVA and UVB radiation

Vitamin A and vitamin A palmitate photostability were tested in different media. Ethanol and octyl octanoate solutions of these two vitamins, as such and with the addition of sunscreens (3,4 methylbenzilidencanfora, butyl methoxy dibenzoylmethane and octyl methoxycinnamate) or β-carotene and butylat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2002-06, Vol.240 (1), p.85-94
Hauptverfasser: Carlotti, M.E., Rossatto, V., Gallarate, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitamin A and vitamin A palmitate photostability were tested in different media. Ethanol and octyl octanoate solutions of these two vitamins, as such and with the addition of sunscreens (3,4 methylbenzilidencanfora, butyl methoxy dibenzoylmethane and octyl methoxycinnamate) or β-carotene and butylated hydroxy toluene, were analysed spectrophotometrically after UVB or UVA irradiation. An O/W fluid emulsion with 0.5% w/w of retinyl palmitate, with and without butylated hydroxy toluene, was prepared. The oil containing the vitamin was extracted with HCl and aluminium sulfate and analysed spectrophotometrically after UVB or UVA irradiation. The fluid emulsion containing retinyl palmitate with and without butylated hydroxy toluene was stored at different temperatures and analysed every week spectrophotometrically for a month. Of the sunscreens tested butyl methoxy dibenzoylmethane showed the strongest protective action towards vitamin A and vitamin A palmitate, whereas β-carotene did not protect either vitamin. Butylated hydroxy toluene inhibited the photodegradation of both vitamins dissolved in octyl octanoate, suggesting that oxygen may be involved in their degradation. O/W emulsion promoted slightly the degradation of vitamin A ester. Butylated hydroxy toluene protected retinyl palmitate from degradation induced by light and heat.
ISSN:0378-5173
1873-3476
DOI:10.1016/S0378-5173(02)00128-X