Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]

In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Heredity 2004-03, Vol.95 (2), p.114-118
Hauptverfasser: Stevison, L.S, Counterman, B.A, Noor, M.A.F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 2
container_start_page 114
container_title Journal of Heredity
container_volume 95
creator Stevison, L.S
Counterman, B.A
Noor, M.A.F
description In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.
doi_str_mv 10.1093/jhered/esh027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71809403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71809403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ada3a5627d51fef24ad789c56a16325456ae7646dc903c78aed5714d058f77443</originalsourceid><addsrcrecordid>eNqFkkFv1DAUhC0EokvhyBUsDpw26bMd2wk3VAoFbelhqahAyPI6TjfbJA52XNH_wI_GVVZF4sLJ1rxPI88bI_ScQE6gYke7rfW2PrJhC1Q-QAtSCJ5JxthDtACgNCMc2AF6EsIOAAiv4DE6SJpklIoF-n3mOmtipz22N66LU-sG7Bp8mXXtcG1rrI2xITh_i686PdR49G6y7RBwO-B33gU3bttO4zHYWDu3CSZ6nePvJ97rKfZvMAXgeG3HKTs30xLf5LgSSzy4HPMlHnMchyH2m7sM-Y-n6FGju2Cf7c9DdPH-5MvxabY6__Dx-O0qM0VRTpmuNdNcUFlz0tiGFrqWZWW40EQwyot0sVIUojYVMCNLbWsuSVEDLxspi4IdotezbwrzM9owqb4NxnYpoHUxKElKqApg_wUpJLeSlgl89Q-4c9EPKYQiVUmAApEJymbIpL0Fbxs1-rbX_lYRUHdlqrlMNZeZ-Bd707jpk3xP79v7a9iGyf66n2t_rYRkkqvTy2-qXH_6LL6uztQq8S9nvtFO6SvfBnWxTk9jQNLXEISxP9BSstM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198102017</pqid></control><display><type>article</type><title>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stevison, L.S ; Counterman, B.A ; Noor, M.A.F</creator><creatorcontrib>Stevison, L.S ; Counterman, B.A ; Noor, M.A.F</creatorcontrib><description>In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.</description><identifier>ISSN: 0022-1503</identifier><identifier>ISSN: 1471-8505</identifier><identifier>EISSN: 1465-7333</identifier><identifier>EISSN: 1471-8505</identifier><identifier>DOI: 10.1093/jhered/esh027</identifier><identifier>PMID: 15073226</identifier><identifier>CODEN: JOHEA8</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Base Sequence ; Butterflies &amp; moths ; Drosophila - genetics ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila pseudoobscura ; Drosophila simulans ; Evolution ; Evolution, Molecular ; Heredity ; Likelihood Functions ; Mexico ; Models, Genetic ; Molecular Sequence Data ; Phylogeny ; Proteins ; Regression Analysis ; Selection, Genetic ; Sequence Alignment ; Sequence Analysis, DNA ; Southwestern United States ; X Chromosome - genetics</subject><ispartof>Journal of Heredity, 2004-03, Vol.95 (2), p.114-118</ispartof><rights>Copyright Oxford University Press(England) Mar/Apr 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ada3a5627d51fef24ad789c56a16325456ae7646dc903c78aed5714d058f77443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15073226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevison, L.S</creatorcontrib><creatorcontrib>Counterman, B.A</creatorcontrib><creatorcontrib>Noor, M.A.F</creatorcontrib><title>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</title><title>Journal of Heredity</title><addtitle>J Hered</addtitle><description>In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Butterflies &amp; moths</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila pseudoobscura</subject><subject>Drosophila simulans</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Heredity</subject><subject>Likelihood Functions</subject><subject>Mexico</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Regression Analysis</subject><subject>Selection, Genetic</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Southwestern United States</subject><subject>X Chromosome - genetics</subject><issn>0022-1503</issn><issn>1471-8505</issn><issn>1465-7333</issn><issn>1471-8505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAUhC0EokvhyBUsDpw26bMd2wk3VAoFbelhqahAyPI6TjfbJA52XNH_wI_GVVZF4sLJ1rxPI88bI_ScQE6gYke7rfW2PrJhC1Q-QAtSCJ5JxthDtACgNCMc2AF6EsIOAAiv4DE6SJpklIoF-n3mOmtipz22N66LU-sG7Bp8mXXtcG1rrI2xITh_i686PdR49G6y7RBwO-B33gU3bttO4zHYWDu3CSZ6nePvJ97rKfZvMAXgeG3HKTs30xLf5LgSSzy4HPMlHnMchyH2m7sM-Y-n6FGju2Cf7c9DdPH-5MvxabY6__Dx-O0qM0VRTpmuNdNcUFlz0tiGFrqWZWW40EQwyot0sVIUojYVMCNLbWsuSVEDLxspi4IdotezbwrzM9owqb4NxnYpoHUxKElKqApg_wUpJLeSlgl89Q-4c9EPKYQiVUmAApEJymbIpL0Fbxs1-rbX_lYRUHdlqrlMNZeZ-Bd707jpk3xP79v7a9iGyf66n2t_rYRkkqvTy2-qXH_6LL6uztQq8S9nvtFO6SvfBnWxTk9jQNLXEISxP9BSstM</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Stevison, L.S</creator><creator>Counterman, B.A</creator><creator>Noor, M.A.F</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</title><author>Stevison, L.S ; Counterman, B.A ; Noor, M.A.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ada3a5627d51fef24ad789c56a16325456ae7646dc903c78aed5714d058f77443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Butterflies &amp; moths</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila pseudoobscura</topic><topic>Drosophila simulans</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Heredity</topic><topic>Likelihood Functions</topic><topic>Mexico</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Regression Analysis</topic><topic>Selection, Genetic</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Southwestern United States</topic><topic>X Chromosome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevison, L.S</creatorcontrib><creatorcontrib>Counterman, B.A</creatorcontrib><creatorcontrib>Noor, M.A.F</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevison, L.S</au><au>Counterman, B.A</au><au>Noor, M.A.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</atitle><jtitle>Journal of Heredity</jtitle><addtitle>J Hered</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>95</volume><issue>2</issue><spage>114</spage><epage>118</epage><pages>114-118</pages><issn>0022-1503</issn><issn>1471-8505</issn><eissn>1465-7333</eissn><eissn>1471-8505</eissn><coden>JOHEA8</coden><abstract>In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>15073226</pmid><doi>10.1093/jhered/esh027</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1503
ispartof Journal of Heredity, 2004-03, Vol.95 (2), p.114-118
issn 0022-1503
1471-8505
1465-7333
1471-8505
language eng
recordid cdi_proquest_miscellaneous_71809403
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Animals
Base Sequence
Butterflies & moths
Drosophila - genetics
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila pseudoobscura
Drosophila simulans
Evolution
Evolution, Molecular
Heredity
Likelihood Functions
Mexico
Models, Genetic
Molecular Sequence Data
Phylogeny
Proteins
Regression Analysis
Selection, Genetic
Sequence Alignment
Sequence Analysis, DNA
Southwestern United States
X Chromosome - genetics
title Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20evolution%20of%20X-linked%20accessory%20gland%20proteins%20in%20Drosophila%20pseudoobscura.%20%5BErratum:%202005%20Sept-Oct,%20v.%2096,%20no.%205,%20p.%20unnumbered.%5D&rft.jtitle=Journal%20of%20Heredity&rft.au=Stevison,%20L.S&rft.date=2004-03-01&rft.volume=95&rft.issue=2&rft.spage=114&rft.epage=118&rft.pages=114-118&rft.issn=0022-1503&rft.eissn=1465-7333&rft.coden=JOHEA8&rft_id=info:doi/10.1093/jhered/esh027&rft_dat=%3Cproquest_cross%3E71809403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198102017&rft_id=info:pmid/15073226&rfr_iscdi=true