Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]
In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in...
Gespeichert in:
Veröffentlicht in: | Journal of Heredity 2004-03, Vol.95 (2), p.114-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 2 |
container_start_page | 114 |
container_title | Journal of Heredity |
container_volume | 95 |
creator | Stevison, L.S Counterman, B.A Noor, M.A.F |
description | In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group. |
doi_str_mv | 10.1093/jhered/esh027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71809403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71809403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ada3a5627d51fef24ad789c56a16325456ae7646dc903c78aed5714d058f77443</originalsourceid><addsrcrecordid>eNqFkkFv1DAUhC0EokvhyBUsDpw26bMd2wk3VAoFbelhqahAyPI6TjfbJA52XNH_wI_GVVZF4sLJ1rxPI88bI_ScQE6gYke7rfW2PrJhC1Q-QAtSCJ5JxthDtACgNCMc2AF6EsIOAAiv4DE6SJpklIoF-n3mOmtipz22N66LU-sG7Bp8mXXtcG1rrI2xITh_i686PdR49G6y7RBwO-B33gU3bttO4zHYWDu3CSZ6nePvJ97rKfZvMAXgeG3HKTs30xLf5LgSSzy4HPMlHnMchyH2m7sM-Y-n6FGju2Cf7c9DdPH-5MvxabY6__Dx-O0qM0VRTpmuNdNcUFlz0tiGFrqWZWW40EQwyot0sVIUojYVMCNLbWsuSVEDLxspi4IdotezbwrzM9owqb4NxnYpoHUxKElKqApg_wUpJLeSlgl89Q-4c9EPKYQiVUmAApEJymbIpL0Fbxs1-rbX_lYRUHdlqrlMNZeZ-Bd707jpk3xP79v7a9iGyf66n2t_rYRkkqvTy2-qXH_6LL6uztQq8S9nvtFO6SvfBnWxTk9jQNLXEISxP9BSstM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198102017</pqid></control><display><type>article</type><title>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stevison, L.S ; Counterman, B.A ; Noor, M.A.F</creator><creatorcontrib>Stevison, L.S ; Counterman, B.A ; Noor, M.A.F</creatorcontrib><description>In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.</description><identifier>ISSN: 0022-1503</identifier><identifier>ISSN: 1471-8505</identifier><identifier>EISSN: 1465-7333</identifier><identifier>EISSN: 1471-8505</identifier><identifier>DOI: 10.1093/jhered/esh027</identifier><identifier>PMID: 15073226</identifier><identifier>CODEN: JOHEA8</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Base Sequence ; Butterflies & moths ; Drosophila - genetics ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila pseudoobscura ; Drosophila simulans ; Evolution ; Evolution, Molecular ; Heredity ; Likelihood Functions ; Mexico ; Models, Genetic ; Molecular Sequence Data ; Phylogeny ; Proteins ; Regression Analysis ; Selection, Genetic ; Sequence Alignment ; Sequence Analysis, DNA ; Southwestern United States ; X Chromosome - genetics</subject><ispartof>Journal of Heredity, 2004-03, Vol.95 (2), p.114-118</ispartof><rights>Copyright Oxford University Press(England) Mar/Apr 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ada3a5627d51fef24ad789c56a16325456ae7646dc903c78aed5714d058f77443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15073226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevison, L.S</creatorcontrib><creatorcontrib>Counterman, B.A</creatorcontrib><creatorcontrib>Noor, M.A.F</creatorcontrib><title>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</title><title>Journal of Heredity</title><addtitle>J Hered</addtitle><description>In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Butterflies & moths</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila pseudoobscura</subject><subject>Drosophila simulans</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Heredity</subject><subject>Likelihood Functions</subject><subject>Mexico</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Regression Analysis</subject><subject>Selection, Genetic</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Southwestern United States</subject><subject>X Chromosome - genetics</subject><issn>0022-1503</issn><issn>1471-8505</issn><issn>1465-7333</issn><issn>1471-8505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAUhC0EokvhyBUsDpw26bMd2wk3VAoFbelhqahAyPI6TjfbJA52XNH_wI_GVVZF4sLJ1rxPI88bI_ScQE6gYke7rfW2PrJhC1Q-QAtSCJ5JxthDtACgNCMc2AF6EsIOAAiv4DE6SJpklIoF-n3mOmtipz22N66LU-sG7Bp8mXXtcG1rrI2xITh_i686PdR49G6y7RBwO-B33gU3bttO4zHYWDu3CSZ6nePvJ97rKfZvMAXgeG3HKTs30xLf5LgSSzy4HPMlHnMchyH2m7sM-Y-n6FGju2Cf7c9DdPH-5MvxabY6__Dx-O0qM0VRTpmuNdNcUFlz0tiGFrqWZWW40EQwyot0sVIUojYVMCNLbWsuSVEDLxspi4IdotezbwrzM9owqb4NxnYpoHUxKElKqApg_wUpJLeSlgl89Q-4c9EPKYQiVUmAApEJymbIpL0Fbxs1-rbX_lYRUHdlqrlMNZeZ-Bd707jpk3xP79v7a9iGyf66n2t_rYRkkqvTy2-qXH_6LL6uztQq8S9nvtFO6SvfBnWxTk9jQNLXEISxP9BSstM</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Stevison, L.S</creator><creator>Counterman, B.A</creator><creator>Noor, M.A.F</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</title><author>Stevison, L.S ; Counterman, B.A ; Noor, M.A.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ada3a5627d51fef24ad789c56a16325456ae7646dc903c78aed5714d058f77443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Butterflies & moths</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila pseudoobscura</topic><topic>Drosophila simulans</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Heredity</topic><topic>Likelihood Functions</topic><topic>Mexico</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Regression Analysis</topic><topic>Selection, Genetic</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Southwestern United States</topic><topic>X Chromosome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevison, L.S</creatorcontrib><creatorcontrib>Counterman, B.A</creatorcontrib><creatorcontrib>Noor, M.A.F</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevison, L.S</au><au>Counterman, B.A</au><au>Noor, M.A.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.]</atitle><jtitle>Journal of Heredity</jtitle><addtitle>J Hered</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>95</volume><issue>2</issue><spage>114</spage><epage>118</epage><pages>114-118</pages><issn>0022-1503</issn><issn>1471-8505</issn><eissn>1465-7333</eissn><eissn>1471-8505</eissn><coden>JOHEA8</coden><abstract>In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>15073226</pmid><doi>10.1093/jhered/esh027</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1503 |
ispartof | Journal of Heredity, 2004-03, Vol.95 (2), p.114-118 |
issn | 0022-1503 1471-8505 1465-7333 1471-8505 |
language | eng |
recordid | cdi_proquest_miscellaneous_71809403 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Animals Base Sequence Butterflies & moths Drosophila - genetics Drosophila melanogaster Drosophila Proteins - genetics Drosophila pseudoobscura Drosophila simulans Evolution Evolution, Molecular Heredity Likelihood Functions Mexico Models, Genetic Molecular Sequence Data Phylogeny Proteins Regression Analysis Selection, Genetic Sequence Alignment Sequence Analysis, DNA Southwestern United States X Chromosome - genetics |
title | Molecular evolution of X-linked accessory gland proteins in Drosophila pseudoobscura. [Erratum: 2005 Sept-Oct, v. 96, no. 5, p. unnumbered.] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20evolution%20of%20X-linked%20accessory%20gland%20proteins%20in%20Drosophila%20pseudoobscura.%20%5BErratum:%202005%20Sept-Oct,%20v.%2096,%20no.%205,%20p.%20unnumbered.%5D&rft.jtitle=Journal%20of%20Heredity&rft.au=Stevison,%20L.S&rft.date=2004-03-01&rft.volume=95&rft.issue=2&rft.spage=114&rft.epage=118&rft.pages=114-118&rft.issn=0022-1503&rft.eissn=1465-7333&rft.coden=JOHEA8&rft_id=info:doi/10.1093/jhered/esh027&rft_dat=%3Cproquest_cross%3E71809403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198102017&rft_id=info:pmid/15073226&rfr_iscdi=true |