Molecular-Scale Tribology of Amorphous Carbon Coatings:  Effects of Film Thickness, Adhesion, and Long-Range Interactions

Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2002-06, Vol.124 (24), p.7202-7209
Hauptverfasser: Gao, G. T, Mikulski, Paul T, Harrison, Judith A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classical molecular dynamics simulations have been conducted to investigate the atomic-scale friction and wear when hydrogen-terminated diamond (111) counterfaces are in sliding contact with diamond (111) surfaces coated with amorphous, hydrogen-free carbon films. Two films, with approximately the same ratio of sp3-to-sp2 carbon, but different thicknesses, have been examined. Both systems give a similar average friction in the load range examined. Above a critical load, a series of tribochemical reactions occur resulting in a significant restructuring of the film. This restructuring is analogous to the “run-in” observed in macroscopic friction experiments and reduces the friction. The contribution of adhesion between the probe (counterface) and the sample to friction was examined by varying the saturation of the counterface. Decreasing the degree of counterface saturation, by reducing the hydrogen termination, increases the friction. Finally, the contribution of long-range interactions to friction was examined by using two potential energy functions that differ only in their long-range forces to examine friction in the same system.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0178618