Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses

Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2004-05, Vol.472 (3), p.257-280
Hauptverfasser: Alvarez, Francisco J., Villalba, Rosa M., Zerda, Ricardo, Schneider, Stephen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 3
container_start_page 257
container_title Journal of comparative neurology (1911)
container_volume 472
creator Alvarez, Francisco J.
Villalba, Rosa M.
Zerda, Ricardo
Schneider, Stephen P.
description Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/cne.20012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71797437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71797437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERZfCgX8A-YSERFqPnfjjiJZ-gFaFQ4Gj5XUm1JBNgu2o7H-P213oqepppDe_96SZR8grYMfAGD_xAx5zxoA_IQtgRlZGS3hKFmUHlTFSHZLnKf1kjBkj9DNyCA2TDXCxINM3TMHPvYv0Rz9nt3EZaY5uSNMYM8ZEw0DzNdI0hcH11I-xfUdvQr4uCvpQpIgdRhx88Y004ZDGuKVTDBtXpuvulpmm7eCmhOkFOehcn_Dlfh6Rr2enV8uLavX5_OPy_aryNTS8AkBlOuMEyJavO5StBM0lq7FuHQfdCi5Y00reSu_WNesU7xqNWpua8Y6BOCJvdrlTHH_PmLLdhOSx792A45ysAmVULdSjYOGE0Pw28e0O9HFMqVxt90daYPa2B1t6sHc9FPb1PnReb7C9J_ePL8DJDrgJPW4fTrLLy9N_kdXOEVLGP_8dLv6yUgnV2O-X5_bTxZU--_BlZUH8BSNDofk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17933821</pqid></control><display><type>article</type><title>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Alvarez, Francisco J. ; Villalba, Rosa M. ; Zerda, Ricardo ; Schneider, Stephen P.</creator><creatorcontrib>Alvarez, Francisco J. ; Villalba, Rosa M. ; Zerda, Ricardo ; Schneider, Stephen P.</creatorcontrib><description>Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.20012</identifier><identifier>PMID: 15065123</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Afferent Pathways - cytology ; Afferent Pathways - metabolism ; Afferent Pathways - ultrastructure ; Animals ; Animals, Newborn ; Anterior Horn Cells - metabolism ; Anterior Horn Cells - ultrastructure ; Calcitonin Gene-Related Peptide - metabolism ; Carrier Proteins - metabolism ; Carrier Proteins - ultrastructure ; Cell Count - methods ; CGRP ; confocal microscopy ; electron microscopy ; Fluorescent Antibody Technique - methods ; Glycoproteins - metabolism ; Glycosphingolipids - metabolism ; IB4 ; Immunohistochemistry - methods ; Lectins - metabolism ; mechanoreceptors ; Membrane Transport Proteins ; Microscopy, Confocal - methods ; Microscopy, Immunoelectron - methods ; nociceptors ; pain ; Parvalbumins - metabolism ; Phosphopyruvate Hydratase - metabolism ; Presynaptic Terminals - classification ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - ultrastructure ; proprioceptors ; Rats ; Rats, Sprague-Dawley ; Rhizotomy - methods ; Secretory Vesicles - metabolism ; Secretory Vesicles - ultrastructure ; Spinal Cord - growth &amp; development ; Spinal Cord - metabolism ; Spinal Cord - ultrastructure ; Stage-Specific Embryonic Antigens ; Synapses - metabolism ; Synapses - ultrastructure ; Vesicular Glutamate Transport Protein 1 ; Vesicular Glutamate Transport Protein 2 ; Vesicular Transport Proteins</subject><ispartof>Journal of comparative neurology (1911), 2004-05, Vol.472 (3), p.257-280</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</citedby><cites>FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.20012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.20012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15065123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez, Francisco J.</creatorcontrib><creatorcontrib>Villalba, Rosa M.</creatorcontrib><creatorcontrib>Zerda, Ricardo</creatorcontrib><creatorcontrib>Schneider, Stephen P.</creatorcontrib><title>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc.</description><subject>Afferent Pathways - cytology</subject><subject>Afferent Pathways - metabolism</subject><subject>Afferent Pathways - ultrastructure</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Anterior Horn Cells - metabolism</subject><subject>Anterior Horn Cells - ultrastructure</subject><subject>Calcitonin Gene-Related Peptide - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - ultrastructure</subject><subject>Cell Count - methods</subject><subject>CGRP</subject><subject>confocal microscopy</subject><subject>electron microscopy</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosphingolipids - metabolism</subject><subject>IB4</subject><subject>Immunohistochemistry - methods</subject><subject>Lectins - metabolism</subject><subject>mechanoreceptors</subject><subject>Membrane Transport Proteins</subject><subject>Microscopy, Confocal - methods</subject><subject>Microscopy, Immunoelectron - methods</subject><subject>nociceptors</subject><subject>pain</subject><subject>Parvalbumins - metabolism</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Presynaptic Terminals - classification</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - ultrastructure</subject><subject>proprioceptors</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rhizotomy - methods</subject><subject>Secretory Vesicles - metabolism</subject><subject>Secretory Vesicles - ultrastructure</subject><subject>Spinal Cord - growth &amp; development</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord - ultrastructure</subject><subject>Stage-Specific Embryonic Antigens</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Vesicular Glutamate Transport Protein 1</subject><subject>Vesicular Glutamate Transport Protein 2</subject><subject>Vesicular Transport Proteins</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS1ERZfCgX8A-YSERFqPnfjjiJZ-gFaFQ4Gj5XUm1JBNgu2o7H-P213oqepppDe_96SZR8grYMfAGD_xAx5zxoA_IQtgRlZGS3hKFmUHlTFSHZLnKf1kjBkj9DNyCA2TDXCxINM3TMHPvYv0Rz9nt3EZaY5uSNMYM8ZEw0DzNdI0hcH11I-xfUdvQr4uCvpQpIgdRhx88Y004ZDGuKVTDBtXpuvulpmm7eCmhOkFOehcn_Dlfh6Rr2enV8uLavX5_OPy_aryNTS8AkBlOuMEyJavO5StBM0lq7FuHQfdCi5Y00reSu_WNesU7xqNWpua8Y6BOCJvdrlTHH_PmLLdhOSx792A45ysAmVULdSjYOGE0Pw28e0O9HFMqVxt90daYPa2B1t6sHc9FPb1PnReb7C9J_ePL8DJDrgJPW4fTrLLy9N_kdXOEVLGP_8dLv6yUgnV2O-X5_bTxZU--_BlZUH8BSNDofk</recordid><startdate>20040503</startdate><enddate>20040503</enddate><creator>Alvarez, Francisco J.</creator><creator>Villalba, Rosa M.</creator><creator>Zerda, Ricardo</creator><creator>Schneider, Stephen P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20040503</creationdate><title>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</title><author>Alvarez, Francisco J. ; Villalba, Rosa M. ; Zerda, Ricardo ; Schneider, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Afferent Pathways - cytology</topic><topic>Afferent Pathways - metabolism</topic><topic>Afferent Pathways - ultrastructure</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Anterior Horn Cells - metabolism</topic><topic>Anterior Horn Cells - ultrastructure</topic><topic>Calcitonin Gene-Related Peptide - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - ultrastructure</topic><topic>Cell Count - methods</topic><topic>CGRP</topic><topic>confocal microscopy</topic><topic>electron microscopy</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosphingolipids - metabolism</topic><topic>IB4</topic><topic>Immunohistochemistry - methods</topic><topic>Lectins - metabolism</topic><topic>mechanoreceptors</topic><topic>Membrane Transport Proteins</topic><topic>Microscopy, Confocal - methods</topic><topic>Microscopy, Immunoelectron - methods</topic><topic>nociceptors</topic><topic>pain</topic><topic>Parvalbumins - metabolism</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Presynaptic Terminals - classification</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - ultrastructure</topic><topic>proprioceptors</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rhizotomy - methods</topic><topic>Secretory Vesicles - metabolism</topic><topic>Secretory Vesicles - ultrastructure</topic><topic>Spinal Cord - growth &amp; development</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord - ultrastructure</topic><topic>Stage-Specific Embryonic Antigens</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Vesicular Glutamate Transport Protein 1</topic><topic>Vesicular Glutamate Transport Protein 2</topic><topic>Vesicular Transport Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez, Francisco J.</creatorcontrib><creatorcontrib>Villalba, Rosa M.</creatorcontrib><creatorcontrib>Zerda, Ricardo</creatorcontrib><creatorcontrib>Schneider, Stephen P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez, Francisco J.</au><au>Villalba, Rosa M.</au><au>Zerda, Ricardo</au><au>Schneider, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2004-05-03</date><risdate>2004</risdate><volume>472</volume><issue>3</issue><spage>257</spage><epage>280</epage><pages>257-280</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15065123</pmid><doi>10.1002/cne.20012</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2004-05, Vol.472 (3), p.257-280
issn 0021-9967
1096-9861
language eng
recordid cdi_proquest_miscellaneous_71797437
source MEDLINE; Access via Wiley Online Library
subjects Afferent Pathways - cytology
Afferent Pathways - metabolism
Afferent Pathways - ultrastructure
Animals
Animals, Newborn
Anterior Horn Cells - metabolism
Anterior Horn Cells - ultrastructure
Calcitonin Gene-Related Peptide - metabolism
Carrier Proteins - metabolism
Carrier Proteins - ultrastructure
Cell Count - methods
CGRP
confocal microscopy
electron microscopy
Fluorescent Antibody Technique - methods
Glycoproteins - metabolism
Glycosphingolipids - metabolism
IB4
Immunohistochemistry - methods
Lectins - metabolism
mechanoreceptors
Membrane Transport Proteins
Microscopy, Confocal - methods
Microscopy, Immunoelectron - methods
nociceptors
pain
Parvalbumins - metabolism
Phosphopyruvate Hydratase - metabolism
Presynaptic Terminals - classification
Presynaptic Terminals - metabolism
Presynaptic Terminals - ultrastructure
proprioceptors
Rats
Rats, Sprague-Dawley
Rhizotomy - methods
Secretory Vesicles - metabolism
Secretory Vesicles - ultrastructure
Spinal Cord - growth & development
Spinal Cord - metabolism
Spinal Cord - ultrastructure
Stage-Specific Embryonic Antigens
Synapses - metabolism
Synapses - ultrastructure
Vesicular Glutamate Transport Protein 1
Vesicular Glutamate Transport Protein 2
Vesicular Transport Proteins
title Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vesicular%20glutamate%20transporters%20in%20the%20spinal%20cord,%20with%20special%20reference%20to%20sensory%20primary%20afferent%20synapses&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Alvarez,%20Francisco%20J.&rft.date=2004-05-03&rft.volume=472&rft.issue=3&rft.spage=257&rft.epage=280&rft.pages=257-280&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.20012&rft_dat=%3Cproquest_cross%3E71797437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17933821&rft_id=info:pmid/15065123&rfr_iscdi=true