Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses
Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversit...
Gespeichert in:
Veröffentlicht in: | Journal of comparative neurology (1911) 2004-05, Vol.472 (3), p.257-280 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 3 |
container_start_page | 257 |
container_title | Journal of comparative neurology (1911) |
container_volume | 472 |
creator | Alvarez, Francisco J. Villalba, Rosa M. Zerda, Ricardo Schneider, Stephen P. |
description | Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/cne.20012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71797437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71797437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS1ERZfCgX8A-YSERFqPnfjjiJZ-gFaFQ4Gj5XUm1JBNgu2o7H-P213oqepppDe_96SZR8grYMfAGD_xAx5zxoA_IQtgRlZGS3hKFmUHlTFSHZLnKf1kjBkj9DNyCA2TDXCxINM3TMHPvYv0Rz9nt3EZaY5uSNMYM8ZEw0DzNdI0hcH11I-xfUdvQr4uCvpQpIgdRhx88Y004ZDGuKVTDBtXpuvulpmm7eCmhOkFOehcn_Dlfh6Rr2enV8uLavX5_OPy_aryNTS8AkBlOuMEyJavO5StBM0lq7FuHQfdCi5Y00reSu_WNesU7xqNWpua8Y6BOCJvdrlTHH_PmLLdhOSx792A45ysAmVULdSjYOGE0Pw28e0O9HFMqVxt90daYPa2B1t6sHc9FPb1PnReb7C9J_ePL8DJDrgJPW4fTrLLy9N_kdXOEVLGP_8dLv6yUgnV2O-X5_bTxZU--_BlZUH8BSNDofk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17933821</pqid></control><display><type>article</type><title>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Alvarez, Francisco J. ; Villalba, Rosa M. ; Zerda, Ricardo ; Schneider, Stephen P.</creator><creatorcontrib>Alvarez, Francisco J. ; Villalba, Rosa M. ; Zerda, Ricardo ; Schneider, Stephen P.</creatorcontrib><description>Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.20012</identifier><identifier>PMID: 15065123</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Afferent Pathways - cytology ; Afferent Pathways - metabolism ; Afferent Pathways - ultrastructure ; Animals ; Animals, Newborn ; Anterior Horn Cells - metabolism ; Anterior Horn Cells - ultrastructure ; Calcitonin Gene-Related Peptide - metabolism ; Carrier Proteins - metabolism ; Carrier Proteins - ultrastructure ; Cell Count - methods ; CGRP ; confocal microscopy ; electron microscopy ; Fluorescent Antibody Technique - methods ; Glycoproteins - metabolism ; Glycosphingolipids - metabolism ; IB4 ; Immunohistochemistry - methods ; Lectins - metabolism ; mechanoreceptors ; Membrane Transport Proteins ; Microscopy, Confocal - methods ; Microscopy, Immunoelectron - methods ; nociceptors ; pain ; Parvalbumins - metabolism ; Phosphopyruvate Hydratase - metabolism ; Presynaptic Terminals - classification ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - ultrastructure ; proprioceptors ; Rats ; Rats, Sprague-Dawley ; Rhizotomy - methods ; Secretory Vesicles - metabolism ; Secretory Vesicles - ultrastructure ; Spinal Cord - growth & development ; Spinal Cord - metabolism ; Spinal Cord - ultrastructure ; Stage-Specific Embryonic Antigens ; Synapses - metabolism ; Synapses - ultrastructure ; Vesicular Glutamate Transport Protein 1 ; Vesicular Glutamate Transport Protein 2 ; Vesicular Transport Proteins</subject><ispartof>Journal of comparative neurology (1911), 2004-05, Vol.472 (3), p.257-280</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>Copyright 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</citedby><cites>FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.20012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.20012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15065123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez, Francisco J.</creatorcontrib><creatorcontrib>Villalba, Rosa M.</creatorcontrib><creatorcontrib>Zerda, Ricardo</creatorcontrib><creatorcontrib>Schneider, Stephen P.</creatorcontrib><title>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc.</description><subject>Afferent Pathways - cytology</subject><subject>Afferent Pathways - metabolism</subject><subject>Afferent Pathways - ultrastructure</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Anterior Horn Cells - metabolism</subject><subject>Anterior Horn Cells - ultrastructure</subject><subject>Calcitonin Gene-Related Peptide - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - ultrastructure</subject><subject>Cell Count - methods</subject><subject>CGRP</subject><subject>confocal microscopy</subject><subject>electron microscopy</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosphingolipids - metabolism</subject><subject>IB4</subject><subject>Immunohistochemistry - methods</subject><subject>Lectins - metabolism</subject><subject>mechanoreceptors</subject><subject>Membrane Transport Proteins</subject><subject>Microscopy, Confocal - methods</subject><subject>Microscopy, Immunoelectron - methods</subject><subject>nociceptors</subject><subject>pain</subject><subject>Parvalbumins - metabolism</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Presynaptic Terminals - classification</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - ultrastructure</subject><subject>proprioceptors</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rhizotomy - methods</subject><subject>Secretory Vesicles - metabolism</subject><subject>Secretory Vesicles - ultrastructure</subject><subject>Spinal Cord - growth & development</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord - ultrastructure</subject><subject>Stage-Specific Embryonic Antigens</subject><subject>Synapses - metabolism</subject><subject>Synapses - ultrastructure</subject><subject>Vesicular Glutamate Transport Protein 1</subject><subject>Vesicular Glutamate Transport Protein 2</subject><subject>Vesicular Transport Proteins</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS1ERZfCgX8A-YSERFqPnfjjiJZ-gFaFQ4Gj5XUm1JBNgu2o7H-P213oqepppDe_96SZR8grYMfAGD_xAx5zxoA_IQtgRlZGS3hKFmUHlTFSHZLnKf1kjBkj9DNyCA2TDXCxINM3TMHPvYv0Rz9nt3EZaY5uSNMYM8ZEw0DzNdI0hcH11I-xfUdvQr4uCvpQpIgdRhx88Y004ZDGuKVTDBtXpuvulpmm7eCmhOkFOehcn_Dlfh6Rr2enV8uLavX5_OPy_aryNTS8AkBlOuMEyJavO5StBM0lq7FuHQfdCi5Y00reSu_WNesU7xqNWpua8Y6BOCJvdrlTHH_PmLLdhOSx792A45ysAmVULdSjYOGE0Pw28e0O9HFMqVxt90daYPa2B1t6sHc9FPb1PnReb7C9J_ePL8DJDrgJPW4fTrLLy9N_kdXOEVLGP_8dLv6yUgnV2O-X5_bTxZU--_BlZUH8BSNDofk</recordid><startdate>20040503</startdate><enddate>20040503</enddate><creator>Alvarez, Francisco J.</creator><creator>Villalba, Rosa M.</creator><creator>Zerda, Ricardo</creator><creator>Schneider, Stephen P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20040503</creationdate><title>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</title><author>Alvarez, Francisco J. ; Villalba, Rosa M. ; Zerda, Ricardo ; Schneider, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4152-11e79f9a316d2bfe6d6182604e4da218d32305d62d6cab40f72f58e889402f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Afferent Pathways - cytology</topic><topic>Afferent Pathways - metabolism</topic><topic>Afferent Pathways - ultrastructure</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Anterior Horn Cells - metabolism</topic><topic>Anterior Horn Cells - ultrastructure</topic><topic>Calcitonin Gene-Related Peptide - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - ultrastructure</topic><topic>Cell Count - methods</topic><topic>CGRP</topic><topic>confocal microscopy</topic><topic>electron microscopy</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosphingolipids - metabolism</topic><topic>IB4</topic><topic>Immunohistochemistry - methods</topic><topic>Lectins - metabolism</topic><topic>mechanoreceptors</topic><topic>Membrane Transport Proteins</topic><topic>Microscopy, Confocal - methods</topic><topic>Microscopy, Immunoelectron - methods</topic><topic>nociceptors</topic><topic>pain</topic><topic>Parvalbumins - metabolism</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Presynaptic Terminals - classification</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - ultrastructure</topic><topic>proprioceptors</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rhizotomy - methods</topic><topic>Secretory Vesicles - metabolism</topic><topic>Secretory Vesicles - ultrastructure</topic><topic>Spinal Cord - growth & development</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord - ultrastructure</topic><topic>Stage-Specific Embryonic Antigens</topic><topic>Synapses - metabolism</topic><topic>Synapses - ultrastructure</topic><topic>Vesicular Glutamate Transport Protein 1</topic><topic>Vesicular Glutamate Transport Protein 2</topic><topic>Vesicular Transport Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez, Francisco J.</creatorcontrib><creatorcontrib>Villalba, Rosa M.</creatorcontrib><creatorcontrib>Zerda, Ricardo</creatorcontrib><creatorcontrib>Schneider, Stephen P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez, Francisco J.</au><au>Villalba, Rosa M.</au><au>Zerda, Ricardo</au><au>Schneider, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2004-05-03</date><risdate>2004</risdate><volume>472</volume><issue>3</issue><spage>257</spage><epage>280</epage><pages>257-280</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Spinal cord sensory synapses are glutamatergic, but previous studies have found a great diversity in synaptic vesicle structure and have suggested additional neurotransmitters. The identification of several vesicular glutamate transporters (VGLUTs) similarly revealed an unexpected molecular diversity among glutamate‐containing terminals. Therefore, we quantitatively investigated VGLUT1 and VGLUT2 content in the central synapses of spinal sensory afferents by using confocal and electron microscopy immunocytochemistry. VGLUT1 localization (most abundant in LIII/LIV and medial LV) is consistent with an origin from cutaneous and muscle mechanoreceptors. Accordingly, most VGLUT1 immunoreactivity disappeared after rhizotomy and colocalized with markers of cutaneous (SSEA4) and muscle (parvalbumin) mechanoreceptors. With postembedding colloidal gold, intense VGLUT1 immunoreactivity was found in 88–95% (depending on the antibody used) of CII dorsal horn glomerular terminals and in large ventral horn synapses receiving axoaxonic contacts. VGLUT1 partially colocalized with CGRP in some large dense‐core vesicles (LDCVs). However, immunostaining in neuropeptidergic afferents was inconsistent between VGLUT1 antibodies and rather weak with light microscopy. VGLUT2 immunoreactivity was widespread in all spinal cord laminae, with higher intensities in LII and lateral LV, complementing VGLUT1 distribution. VGLUT2 immunoreactivity did not change after rhizotomy, suggesting a preferential intrinsic origin. However, weak VGLUT2 immunoreactivity was detectable in primary sensory nociceptors expressing lectin (GSA‐IB4) binding and in 83–90% of CI glomerular terminals in LII. Additional weak VGLUT2 immunoreactivity was found over the small clear vesicles of LDCV‐containing afferents and in 50–60% of CII terminals in LIII. These results indicate a diversity of VGLUT isoform combinations expressed in different spinal primary afferents. J. Comp. Neurol. 472:257–280, 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15065123</pmid><doi>10.1002/cne.20012</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2004-05, Vol.472 (3), p.257-280 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_71797437 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Afferent Pathways - cytology Afferent Pathways - metabolism Afferent Pathways - ultrastructure Animals Animals, Newborn Anterior Horn Cells - metabolism Anterior Horn Cells - ultrastructure Calcitonin Gene-Related Peptide - metabolism Carrier Proteins - metabolism Carrier Proteins - ultrastructure Cell Count - methods CGRP confocal microscopy electron microscopy Fluorescent Antibody Technique - methods Glycoproteins - metabolism Glycosphingolipids - metabolism IB4 Immunohistochemistry - methods Lectins - metabolism mechanoreceptors Membrane Transport Proteins Microscopy, Confocal - methods Microscopy, Immunoelectron - methods nociceptors pain Parvalbumins - metabolism Phosphopyruvate Hydratase - metabolism Presynaptic Terminals - classification Presynaptic Terminals - metabolism Presynaptic Terminals - ultrastructure proprioceptors Rats Rats, Sprague-Dawley Rhizotomy - methods Secretory Vesicles - metabolism Secretory Vesicles - ultrastructure Spinal Cord - growth & development Spinal Cord - metabolism Spinal Cord - ultrastructure Stage-Specific Embryonic Antigens Synapses - metabolism Synapses - ultrastructure Vesicular Glutamate Transport Protein 1 Vesicular Glutamate Transport Protein 2 Vesicular Transport Proteins |
title | Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vesicular%20glutamate%20transporters%20in%20the%20spinal%20cord,%20with%20special%20reference%20to%20sensory%20primary%20afferent%20synapses&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Alvarez,%20Francisco%20J.&rft.date=2004-05-03&rft.volume=472&rft.issue=3&rft.spage=257&rft.epage=280&rft.pages=257-280&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.20012&rft_dat=%3Cproquest_cross%3E71797437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17933821&rft_id=info:pmid/15065123&rfr_iscdi=true |