Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study
We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditor...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2004-04, Vol.21 (4), p.1701-1720 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1720 |
---|---|
container_issue | 4 |
container_start_page | 1701 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 21 |
creator | Husain, F.T. Tagamets, M.-A. Fromm, S.J. Braun, A.R. Horwitz, B. |
description | We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex. |
doi_str_mv | 10.1016/j.neuroimage.2003.11.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71793527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381190300733X</els_id><sourcerecordid>3244232161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</originalsourceid><addsrcrecordid>eNqFkV2L1TAQhoso7rr6FyQgeNeaSduk8U4XPxZWhEWvQ5pMl5S2OSbpQm_87abnHFzwRkLIBJ555-MtCgK0Agr83VgtuAbvZn2PFaO0rgAqCuxJcQlUtqVsBXu6x21ddgDyongR40gpldB0z4sLaGk-kl0Wv-9w0skt9-SouOiJ2G3RszORDD4QvVqXfNiI70c0iRyCNxjjnpA8-dvF_tcmuQeXtvdEE-Pnw5qy8FFx9hanI7LYfMnw7e6GxLTa7WXxbNBTxFfn96r4-fnTj-uv5e33LzfXH25LU8sulUhR2tbWDdeyByE7C20vB8zj8Fr0_SCY4IbVVrSaNRI45VRTpgX0XOtG1lfF25Nu7v_XijGp2UWD06QX9GtUIovWLRMZfPMPOPo15CGiykvjnApGm0x1J8oEH2PAQR1CXkPYFFC1O6RG9eiQ2h1SACo7lFNfnwus_Yz2MfFsSQY-ngDM-3hwGFQ0DheD1oXsgLLe_b_KHwa7qLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506607204</pqid></control><display><type>article</type><title>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Husain, F.T. ; Tagamets, M.-A. ; Fromm, S.J. ; Braun, A.R. ; Horwitz, B.</creator><creatorcontrib>Husain, F.T. ; Tagamets, M.-A. ; Fromm, S.J. ; Braun, A.R. ; Horwitz, B.</creatorcontrib><description>We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.11.012</identifier><identifier>PMID: 15050592</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Animal communication ; Auditory cortex ; Auditory Cortex - physiology ; Auditory Pathways - physiology ; Auditory Perception - physiology ; Brain ; Brain Mapping ; Cerebral Cortex - physiology ; Dominance, Cerebral - physiology ; Female ; Human ; Human subjects ; Humans ; Image Enhancement ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Male ; Memory, Short-Term - physiology ; Monkeys & apes ; Neural network ; Neural Networks (Computer) ; Neurons - physiology ; Oxygen - blood ; PET ; Pitch Perception - physiology ; Prefrontal Cortex - physiology ; Primate ; Psychoacoustics ; Reference Values ; Retention (Psychology) - physiology ; Sound Localization - physiology ; Sound Spectrography ; Speech Perception - physiology ; Studies ; Superior temporal gyrus ; Tomography, Emission-Computed ; Working memory</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1701-1720</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</citedby><cites>FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S105381190300733X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15050592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Husain, F.T.</creatorcontrib><creatorcontrib>Tagamets, M.-A.</creatorcontrib><creatorcontrib>Fromm, S.J.</creatorcontrib><creatorcontrib>Braun, A.R.</creatorcontrib><creatorcontrib>Horwitz, B.</creatorcontrib><title>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex.</description><subject>Adult</subject><subject>Animal communication</subject><subject>Auditory cortex</subject><subject>Auditory Cortex - physiology</subject><subject>Auditory Pathways - physiology</subject><subject>Auditory Perception - physiology</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - physiology</subject><subject>Dominance, Cerebral - physiology</subject><subject>Female</subject><subject>Human</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Image Enhancement</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Memory, Short-Term - physiology</subject><subject>Monkeys & apes</subject><subject>Neural network</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><subject>Oxygen - blood</subject><subject>PET</subject><subject>Pitch Perception - physiology</subject><subject>Prefrontal Cortex - physiology</subject><subject>Primate</subject><subject>Psychoacoustics</subject><subject>Reference Values</subject><subject>Retention (Psychology) - physiology</subject><subject>Sound Localization - physiology</subject><subject>Sound Spectrography</subject><subject>Speech Perception - physiology</subject><subject>Studies</subject><subject>Superior temporal gyrus</subject><subject>Tomography, Emission-Computed</subject><subject>Working memory</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkV2L1TAQhoso7rr6FyQgeNeaSduk8U4XPxZWhEWvQ5pMl5S2OSbpQm_87abnHFzwRkLIBJ555-MtCgK0Agr83VgtuAbvZn2PFaO0rgAqCuxJcQlUtqVsBXu6x21ddgDyongR40gpldB0z4sLaGk-kl0Wv-9w0skt9-SouOiJ2G3RszORDD4QvVqXfNiI70c0iRyCNxjjnpA8-dvF_tcmuQeXtvdEE-Pnw5qy8FFx9hanI7LYfMnw7e6GxLTa7WXxbNBTxFfn96r4-fnTj-uv5e33LzfXH25LU8sulUhR2tbWDdeyByE7C20vB8zj8Fr0_SCY4IbVVrSaNRI45VRTpgX0XOtG1lfF25Nu7v_XijGp2UWD06QX9GtUIovWLRMZfPMPOPo15CGiykvjnApGm0x1J8oEH2PAQR1CXkPYFFC1O6RG9eiQ2h1SACo7lFNfnwus_Yz2MfFsSQY-ngDM-3hwGFQ0DheD1oXsgLLe_b_KHwa7qLk</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Husain, F.T.</creator><creator>Tagamets, M.-A.</creator><creator>Fromm, S.J.</creator><creator>Braun, A.R.</creator><creator>Horwitz, B.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</title><author>Husain, F.T. ; Tagamets, M.-A. ; Fromm, S.J. ; Braun, A.R. ; Horwitz, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Animal communication</topic><topic>Auditory cortex</topic><topic>Auditory Cortex - physiology</topic><topic>Auditory Pathways - physiology</topic><topic>Auditory Perception - physiology</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - physiology</topic><topic>Dominance, Cerebral - physiology</topic><topic>Female</topic><topic>Human</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Image Enhancement</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Memory, Short-Term - physiology</topic><topic>Monkeys & apes</topic><topic>Neural network</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><topic>Oxygen - blood</topic><topic>PET</topic><topic>Pitch Perception - physiology</topic><topic>Prefrontal Cortex - physiology</topic><topic>Primate</topic><topic>Psychoacoustics</topic><topic>Reference Values</topic><topic>Retention (Psychology) - physiology</topic><topic>Sound Localization - physiology</topic><topic>Sound Spectrography</topic><topic>Speech Perception - physiology</topic><topic>Studies</topic><topic>Superior temporal gyrus</topic><topic>Tomography, Emission-Computed</topic><topic>Working memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husain, F.T.</creatorcontrib><creatorcontrib>Tagamets, M.-A.</creatorcontrib><creatorcontrib>Fromm, S.J.</creatorcontrib><creatorcontrib>Braun, A.R.</creatorcontrib><creatorcontrib>Horwitz, B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husain, F.T.</au><au>Tagamets, M.-A.</au><au>Fromm, S.J.</au><au>Braun, A.R.</au><au>Horwitz, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>21</volume><issue>4</issue><spage>1701</spage><epage>1720</epage><pages>1701-1720</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15050592</pmid><doi>10.1016/j.neuroimage.2003.11.012</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1701-1720 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_71793527 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Animal communication Auditory cortex Auditory Cortex - physiology Auditory Pathways - physiology Auditory Perception - physiology Brain Brain Mapping Cerebral Cortex - physiology Dominance, Cerebral - physiology Female Human Human subjects Humans Image Enhancement Image Processing, Computer-Assisted Imaging, Three-Dimensional Magnetic Resonance Imaging Male Memory, Short-Term - physiology Monkeys & apes Neural network Neural Networks (Computer) Neurons - physiology Oxygen - blood PET Pitch Perception - physiology Prefrontal Cortex - physiology Primate Psychoacoustics Reference Values Retention (Psychology) - physiology Sound Localization - physiology Sound Spectrography Speech Perception - physiology Studies Superior temporal gyrus Tomography, Emission-Computed Working memory |
title | Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20neuronal%20dynamics%20for%20auditory%20object%20processing%20to%20neuroimaging%20activity:%20a%20computational%20modeling%20and%20an%20fMRI%20study&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Husain,%20F.T.&rft.date=2004-04-01&rft.volume=21&rft.issue=4&rft.spage=1701&rft.epage=1720&rft.pages=1701-1720&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.11.012&rft_dat=%3Cproquest_cross%3E3244232161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506607204&rft_id=info:pmid/15050592&rft_els_id=S105381190300733X&rfr_iscdi=true |