Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study

We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2004-04, Vol.21 (4), p.1701-1720
Hauptverfasser: Husain, F.T., Tagamets, M.-A., Fromm, S.J., Braun, A.R., Horwitz, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1720
container_issue 4
container_start_page 1701
container_title NeuroImage (Orlando, Fla.)
container_volume 21
creator Husain, F.T.
Tagamets, M.-A.
Fromm, S.J.
Braun, A.R.
Horwitz, B.
description We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex.
doi_str_mv 10.1016/j.neuroimage.2003.11.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71793527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381190300733X</els_id><sourcerecordid>3244232161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</originalsourceid><addsrcrecordid>eNqFkV2L1TAQhoso7rr6FyQgeNeaSduk8U4XPxZWhEWvQ5pMl5S2OSbpQm_87abnHFzwRkLIBJ555-MtCgK0Agr83VgtuAbvZn2PFaO0rgAqCuxJcQlUtqVsBXu6x21ddgDyongR40gpldB0z4sLaGk-kl0Wv-9w0skt9-SouOiJ2G3RszORDD4QvVqXfNiI70c0iRyCNxjjnpA8-dvF_tcmuQeXtvdEE-Pnw5qy8FFx9hanI7LYfMnw7e6GxLTa7WXxbNBTxFfn96r4-fnTj-uv5e33LzfXH25LU8sulUhR2tbWDdeyByE7C20vB8zj8Fr0_SCY4IbVVrSaNRI45VRTpgX0XOtG1lfF25Nu7v_XijGp2UWD06QX9GtUIovWLRMZfPMPOPo15CGiykvjnApGm0x1J8oEH2PAQR1CXkPYFFC1O6RG9eiQ2h1SACo7lFNfnwus_Yz2MfFsSQY-ngDM-3hwGFQ0DheD1oXsgLLe_b_KHwa7qLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506607204</pqid></control><display><type>article</type><title>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Husain, F.T. ; Tagamets, M.-A. ; Fromm, S.J. ; Braun, A.R. ; Horwitz, B.</creator><creatorcontrib>Husain, F.T. ; Tagamets, M.-A. ; Fromm, S.J. ; Braun, A.R. ; Horwitz, B.</creatorcontrib><description>We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.11.012</identifier><identifier>PMID: 15050592</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Animal communication ; Auditory cortex ; Auditory Cortex - physiology ; Auditory Pathways - physiology ; Auditory Perception - physiology ; Brain ; Brain Mapping ; Cerebral Cortex - physiology ; Dominance, Cerebral - physiology ; Female ; Human ; Human subjects ; Humans ; Image Enhancement ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Male ; Memory, Short-Term - physiology ; Monkeys &amp; apes ; Neural network ; Neural Networks (Computer) ; Neurons - physiology ; Oxygen - blood ; PET ; Pitch Perception - physiology ; Prefrontal Cortex - physiology ; Primate ; Psychoacoustics ; Reference Values ; Retention (Psychology) - physiology ; Sound Localization - physiology ; Sound Spectrography ; Speech Perception - physiology ; Studies ; Superior temporal gyrus ; Tomography, Emission-Computed ; Working memory</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1701-1720</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</citedby><cites>FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S105381190300733X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15050592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Husain, F.T.</creatorcontrib><creatorcontrib>Tagamets, M.-A.</creatorcontrib><creatorcontrib>Fromm, S.J.</creatorcontrib><creatorcontrib>Braun, A.R.</creatorcontrib><creatorcontrib>Horwitz, B.</creatorcontrib><title>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex.</description><subject>Adult</subject><subject>Animal communication</subject><subject>Auditory cortex</subject><subject>Auditory Cortex - physiology</subject><subject>Auditory Pathways - physiology</subject><subject>Auditory Perception - physiology</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - physiology</subject><subject>Dominance, Cerebral - physiology</subject><subject>Female</subject><subject>Human</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Image Enhancement</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Memory, Short-Term - physiology</subject><subject>Monkeys &amp; apes</subject><subject>Neural network</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><subject>Oxygen - blood</subject><subject>PET</subject><subject>Pitch Perception - physiology</subject><subject>Prefrontal Cortex - physiology</subject><subject>Primate</subject><subject>Psychoacoustics</subject><subject>Reference Values</subject><subject>Retention (Psychology) - physiology</subject><subject>Sound Localization - physiology</subject><subject>Sound Spectrography</subject><subject>Speech Perception - physiology</subject><subject>Studies</subject><subject>Superior temporal gyrus</subject><subject>Tomography, Emission-Computed</subject><subject>Working memory</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkV2L1TAQhoso7rr6FyQgeNeaSduk8U4XPxZWhEWvQ5pMl5S2OSbpQm_87abnHFzwRkLIBJ555-MtCgK0Agr83VgtuAbvZn2PFaO0rgAqCuxJcQlUtqVsBXu6x21ddgDyongR40gpldB0z4sLaGk-kl0Wv-9w0skt9-SouOiJ2G3RszORDD4QvVqXfNiI70c0iRyCNxjjnpA8-dvF_tcmuQeXtvdEE-Pnw5qy8FFx9hanI7LYfMnw7e6GxLTa7WXxbNBTxFfn96r4-fnTj-uv5e33LzfXH25LU8sulUhR2tbWDdeyByE7C20vB8zj8Fr0_SCY4IbVVrSaNRI45VRTpgX0XOtG1lfF25Nu7v_XijGp2UWD06QX9GtUIovWLRMZfPMPOPo15CGiykvjnApGm0x1J8oEH2PAQR1CXkPYFFC1O6RG9eiQ2h1SACo7lFNfnwus_Yz2MfFsSQY-ngDM-3hwGFQ0DheD1oXsgLLe_b_KHwa7qLk</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Husain, F.T.</creator><creator>Tagamets, M.-A.</creator><creator>Fromm, S.J.</creator><creator>Braun, A.R.</creator><creator>Horwitz, B.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</title><author>Husain, F.T. ; Tagamets, M.-A. ; Fromm, S.J. ; Braun, A.R. ; Horwitz, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-e0e9d5d346a9b1798d15b9fe914637bbf7276c23d75a24916060a02a71b6aa493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Animal communication</topic><topic>Auditory cortex</topic><topic>Auditory Cortex - physiology</topic><topic>Auditory Pathways - physiology</topic><topic>Auditory Perception - physiology</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - physiology</topic><topic>Dominance, Cerebral - physiology</topic><topic>Female</topic><topic>Human</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Image Enhancement</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Memory, Short-Term - physiology</topic><topic>Monkeys &amp; apes</topic><topic>Neural network</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><topic>Oxygen - blood</topic><topic>PET</topic><topic>Pitch Perception - physiology</topic><topic>Prefrontal Cortex - physiology</topic><topic>Primate</topic><topic>Psychoacoustics</topic><topic>Reference Values</topic><topic>Retention (Psychology) - physiology</topic><topic>Sound Localization - physiology</topic><topic>Sound Spectrography</topic><topic>Speech Perception - physiology</topic><topic>Studies</topic><topic>Superior temporal gyrus</topic><topic>Tomography, Emission-Computed</topic><topic>Working memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Husain, F.T.</creatorcontrib><creatorcontrib>Tagamets, M.-A.</creatorcontrib><creatorcontrib>Fromm, S.J.</creatorcontrib><creatorcontrib>Braun, A.R.</creatorcontrib><creatorcontrib>Horwitz, B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Husain, F.T.</au><au>Tagamets, M.-A.</au><au>Fromm, S.J.</au><au>Braun, A.R.</au><au>Horwitz, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>21</volume><issue>4</issue><spage>1701</spage><epage>1720</epage><pages>1701-1720</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>We investigated the neural basis of auditory object processing in the cerebral cortex by combining neural modeling and functional neuroimaging. We developed a large-scale, neurobiologically realistic network model of auditory pattern recognition that relates the neuronal dynamics of cortical auditory processing of frequency modulated (FM) sweeps to functional neuroimaging data of the type obtained using PET and fMRI. Areas included in the model extend from primary auditory to prefrontal cortex. The electrical activities of the neuronal units of the model were constrained to agree with data from the neurophysiological literature regarding the perception of FM sweeps. We also conducted an fMRI experiment using stimuli and tasks similar to those used in our simulations. The integrated synaptic activity of the neuronal units in each region of the model, convolved with a hemodynamic response function, was used as a correlate of the simulated fMRI activity, and generally agreed with the experimentally observed fMRI data in the brain areas corresponding to the regions of the model. Our results demonstrate that the model is capable of exhibiting the salient features of both electrophysiological neuronal activities and fMRI values that are in agreement with empirically observed data. These findings provide support for our hypotheses concerning how auditory objects are processed by primate neocortex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15050592</pmid><doi>10.1016/j.neuroimage.2003.11.012</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1701-1720
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_71793527
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Animal communication
Auditory cortex
Auditory Cortex - physiology
Auditory Pathways - physiology
Auditory Perception - physiology
Brain
Brain Mapping
Cerebral Cortex - physiology
Dominance, Cerebral - physiology
Female
Human
Human subjects
Humans
Image Enhancement
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Male
Memory, Short-Term - physiology
Monkeys & apes
Neural network
Neural Networks (Computer)
Neurons - physiology
Oxygen - blood
PET
Pitch Perception - physiology
Prefrontal Cortex - physiology
Primate
Psychoacoustics
Reference Values
Retention (Psychology) - physiology
Sound Localization - physiology
Sound Spectrography
Speech Perception - physiology
Studies
Superior temporal gyrus
Tomography, Emission-Computed
Working memory
title Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20neuronal%20dynamics%20for%20auditory%20object%20processing%20to%20neuroimaging%20activity:%20a%20computational%20modeling%20and%20an%20fMRI%20study&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Husain,%20F.T.&rft.date=2004-04-01&rft.volume=21&rft.issue=4&rft.spage=1701&rft.epage=1720&rft.pages=1701-1720&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.11.012&rft_dat=%3Cproquest_cross%3E3244232161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506607204&rft_id=info:pmid/15050592&rft_els_id=S105381190300733X&rfr_iscdi=true