Bayesian model averaging in EEG/MEG imaging
In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2004-04, Vol.21 (4), p.1300-1319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1319 |
---|---|
container_issue | 4 |
container_start_page | 1300 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 21 |
creator | Trujillo-Barreto, Nelson J. Aubert-Vázquez, Eduardo Valdés-Sosa, Pedro A. |
description | In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA). |
doi_str_mv | 10.1016/j.neuroimage.2003.11.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71793369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903007286</els_id><sourcerecordid>3244686101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlb_giwIXmS3mf3Ix1FLrULFi55DNjtbUra7NekW-u_N0kLBi-QwITwzb-YhJAKaAAU2XSct9q6zG73CJKU0SwASSsUFGQOVRSwLnl4O9yKLBYAckRvv15RSCbm4JiMoaDgFH5OnF31Ab3UbbboKm0jv0emVbVeRbaP5fDH9mC-iISc83ZKrWjce7051Qr5f51-zt3j5uXifPS9jk-diFwNkJhc1k6wqJGd1qesKtCkkVoymnHGeUpFWJSI1nItCCMHzktVamkykUmcT8nicu3XdT49-pzbWG2wa3WLXe8WByyxjMoAPf8B117s2_E2FDRkXnMJAiSNlXOe9w1ptXdjIHRRQNehUa3XWqQadCkAFnaH1_hTQlxuszo0nfwF4OQIYfOwtOuWNxdZgZR2anao6-3_KL-4niFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506787019</pqid></control><display><type>article</type><title>Bayesian model averaging in EEG/MEG imaging</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Trujillo-Barreto, Nelson J. ; Aubert-Vázquez, Eduardo ; Valdés-Sosa, Pedro A.</creator><creatorcontrib>Trujillo-Barreto, Nelson J. ; Aubert-Vázquez, Eduardo ; Valdés-Sosa, Pedro A.</creatorcontrib><description>In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA).</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.11.008</identifier><identifier>PMID: 15050557</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Bayesian model averaging ; Brain - physiology ; Brain Mapping ; Data Collection - statistics & numerical data ; Dominance, Cerebral - physiology ; EEG ; Electroencephalography - statistics & numerical data ; Evoked Potentials, Auditory - physiology ; Humans ; Hypotheses ; Hypothesis testing ; Image Processing, Computer-Assisted - statistics & numerical data ; Imaging, Three-Dimensional - statistics & numerical data ; Inverse problem ; Inverse problems ; Linear Models ; Magnetic Resonance Imaging ; Magnetoencephalography - statistics & numerical data ; Mathematical Computing ; Medical imaging ; MEG ; Methods ; Model comparison ; Models, Neurological ; Nerve Net - physiology ; Occipital Lobe - physiology ; Probability ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Thalamus - physiology</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1300-1319</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</citedby><cites>FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506787019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72341</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15050557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trujillo-Barreto, Nelson J.</creatorcontrib><creatorcontrib>Aubert-Vázquez, Eduardo</creatorcontrib><creatorcontrib>Valdés-Sosa, Pedro A.</creatorcontrib><title>Bayesian model averaging in EEG/MEG imaging</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA).</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian model averaging</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Data Collection - statistics & numerical data</subject><subject>Dominance, Cerebral - physiology</subject><subject>EEG</subject><subject>Electroencephalography - statistics & numerical data</subject><subject>Evoked Potentials, Auditory - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Imaging, Three-Dimensional - statistics & numerical data</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetoencephalography - statistics & numerical data</subject><subject>Mathematical Computing</subject><subject>Medical imaging</subject><subject>MEG</subject><subject>Methods</subject><subject>Model comparison</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Occipital Lobe - physiology</subject><subject>Probability</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Thalamus - physiology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMotlb_giwIXmS3mf3Ix1FLrULFi55DNjtbUra7NekW-u_N0kLBi-QwITwzb-YhJAKaAAU2XSct9q6zG73CJKU0SwASSsUFGQOVRSwLnl4O9yKLBYAckRvv15RSCbm4JiMoaDgFH5OnF31Ab3UbbboKm0jv0emVbVeRbaP5fDH9mC-iISc83ZKrWjce7051Qr5f51-zt3j5uXifPS9jk-diFwNkJhc1k6wqJGd1qesKtCkkVoymnHGeUpFWJSI1nItCCMHzktVamkykUmcT8nicu3XdT49-pzbWG2wa3WLXe8WByyxjMoAPf8B117s2_E2FDRkXnMJAiSNlXOe9w1ptXdjIHRRQNehUa3XWqQadCkAFnaH1_hTQlxuszo0nfwF4OQIYfOwtOuWNxdZgZR2anao6-3_KL-4niFI</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Trujillo-Barreto, Nelson J.</creator><creator>Aubert-Vázquez, Eduardo</creator><creator>Valdés-Sosa, Pedro A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Bayesian model averaging in EEG/MEG imaging</title><author>Trujillo-Barreto, Nelson J. ; Aubert-Vázquez, Eduardo ; Valdés-Sosa, Pedro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian model averaging</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Data Collection - statistics & numerical data</topic><topic>Dominance, Cerebral - physiology</topic><topic>EEG</topic><topic>Electroencephalography - statistics & numerical data</topic><topic>Evoked Potentials, Auditory - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Imaging, Three-Dimensional - statistics & numerical data</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetoencephalography - statistics & numerical data</topic><topic>Mathematical Computing</topic><topic>Medical imaging</topic><topic>MEG</topic><topic>Methods</topic><topic>Model comparison</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Occipital Lobe - physiology</topic><topic>Probability</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Thalamus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trujillo-Barreto, Nelson J.</creatorcontrib><creatorcontrib>Aubert-Vázquez, Eduardo</creatorcontrib><creatorcontrib>Valdés-Sosa, Pedro A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trujillo-Barreto, Nelson J.</au><au>Aubert-Vázquez, Eduardo</au><au>Valdés-Sosa, Pedro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian model averaging in EEG/MEG imaging</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>21</volume><issue>4</issue><spage>1300</spage><epage>1319</epage><pages>1300-1319</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15050557</pmid><doi>10.1016/j.neuroimage.2003.11.008</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1300-1319 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_71793369 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Bayes Theorem Bayesian analysis Bayesian inference Bayesian model averaging Brain - physiology Brain Mapping Data Collection - statistics & numerical data Dominance, Cerebral - physiology EEG Electroencephalography - statistics & numerical data Evoked Potentials, Auditory - physiology Humans Hypotheses Hypothesis testing Image Processing, Computer-Assisted - statistics & numerical data Imaging, Three-Dimensional - statistics & numerical data Inverse problem Inverse problems Linear Models Magnetic Resonance Imaging Magnetoencephalography - statistics & numerical data Mathematical Computing Medical imaging MEG Methods Model comparison Models, Neurological Nerve Net - physiology Occipital Lobe - physiology Probability Reproducibility of Results Signal Processing, Computer-Assisted Thalamus - physiology |
title | Bayesian model averaging in EEG/MEG imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20model%20averaging%20in%20EEG/MEG%20imaging&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Trujillo-Barreto,%20Nelson%20J.&rft.date=2004-04-01&rft.volume=21&rft.issue=4&rft.spage=1300&rft.epage=1319&rft.pages=1300-1319&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.11.008&rft_dat=%3Cproquest_cross%3E3244686101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506787019&rft_id=info:pmid/15050557&rft_els_id=S1053811903007286&rfr_iscdi=true |