Bayesian model averaging in EEG/MEG imaging

In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2004-04, Vol.21 (4), p.1300-1319
Hauptverfasser: Trujillo-Barreto, Nelson J., Aubert-Vázquez, Eduardo, Valdés-Sosa, Pedro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1319
container_issue 4
container_start_page 1300
container_title NeuroImage (Orlando, Fla.)
container_volume 21
creator Trujillo-Barreto, Nelson J.
Aubert-Vázquez, Eduardo
Valdés-Sosa, Pedro A.
description In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA).
doi_str_mv 10.1016/j.neuroimage.2003.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71793369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903007286</els_id><sourcerecordid>3244686101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlb_giwIXmS3mf3Ix1FLrULFi55DNjtbUra7NekW-u_N0kLBi-QwITwzb-YhJAKaAAU2XSct9q6zG73CJKU0SwASSsUFGQOVRSwLnl4O9yKLBYAckRvv15RSCbm4JiMoaDgFH5OnF31Ab3UbbboKm0jv0emVbVeRbaP5fDH9mC-iISc83ZKrWjce7051Qr5f51-zt3j5uXifPS9jk-diFwNkJhc1k6wqJGd1qesKtCkkVoymnHGeUpFWJSI1nItCCMHzktVamkykUmcT8nicu3XdT49-pzbWG2wa3WLXe8WByyxjMoAPf8B117s2_E2FDRkXnMJAiSNlXOe9w1ptXdjIHRRQNehUa3XWqQadCkAFnaH1_hTQlxuszo0nfwF4OQIYfOwtOuWNxdZgZR2anao6-3_KL-4niFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506787019</pqid></control><display><type>article</type><title>Bayesian model averaging in EEG/MEG imaging</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Trujillo-Barreto, Nelson J. ; Aubert-Vázquez, Eduardo ; Valdés-Sosa, Pedro A.</creator><creatorcontrib>Trujillo-Barreto, Nelson J. ; Aubert-Vázquez, Eduardo ; Valdés-Sosa, Pedro A.</creatorcontrib><description>In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA).</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.11.008</identifier><identifier>PMID: 15050557</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Bayesian model averaging ; Brain - physiology ; Brain Mapping ; Data Collection - statistics &amp; numerical data ; Dominance, Cerebral - physiology ; EEG ; Electroencephalography - statistics &amp; numerical data ; Evoked Potentials, Auditory - physiology ; Humans ; Hypotheses ; Hypothesis testing ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Imaging, Three-Dimensional - statistics &amp; numerical data ; Inverse problem ; Inverse problems ; Linear Models ; Magnetic Resonance Imaging ; Magnetoencephalography - statistics &amp; numerical data ; Mathematical Computing ; Medical imaging ; MEG ; Methods ; Model comparison ; Models, Neurological ; Nerve Net - physiology ; Occipital Lobe - physiology ; Probability ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Thalamus - physiology</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1300-1319</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</citedby><cites>FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506787019?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72341</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15050557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trujillo-Barreto, Nelson J.</creatorcontrib><creatorcontrib>Aubert-Vázquez, Eduardo</creatorcontrib><creatorcontrib>Valdés-Sosa, Pedro A.</creatorcontrib><title>Bayesian model averaging in EEG/MEG imaging</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA).</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian model averaging</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Data Collection - statistics &amp; numerical data</subject><subject>Dominance, Cerebral - physiology</subject><subject>EEG</subject><subject>Electroencephalography - statistics &amp; numerical data</subject><subject>Evoked Potentials, Auditory - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Imaging, Three-Dimensional - statistics &amp; numerical data</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetoencephalography - statistics &amp; numerical data</subject><subject>Mathematical Computing</subject><subject>Medical imaging</subject><subject>MEG</subject><subject>Methods</subject><subject>Model comparison</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Occipital Lobe - physiology</subject><subject>Probability</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Thalamus - physiology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMotlb_giwIXmS3mf3Ix1FLrULFi55DNjtbUra7NekW-u_N0kLBi-QwITwzb-YhJAKaAAU2XSct9q6zG73CJKU0SwASSsUFGQOVRSwLnl4O9yKLBYAckRvv15RSCbm4JiMoaDgFH5OnF31Ab3UbbboKm0jv0emVbVeRbaP5fDH9mC-iISc83ZKrWjce7051Qr5f51-zt3j5uXifPS9jk-diFwNkJhc1k6wqJGd1qesKtCkkVoymnHGeUpFWJSI1nItCCMHzktVamkykUmcT8nicu3XdT49-pzbWG2wa3WLXe8WByyxjMoAPf8B117s2_E2FDRkXnMJAiSNlXOe9w1ptXdjIHRRQNehUa3XWqQadCkAFnaH1_hTQlxuszo0nfwF4OQIYfOwtOuWNxdZgZR2anao6-3_KL-4niFI</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Trujillo-Barreto, Nelson J.</creator><creator>Aubert-Vázquez, Eduardo</creator><creator>Valdés-Sosa, Pedro A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Bayesian model averaging in EEG/MEG imaging</title><author>Trujillo-Barreto, Nelson J. ; Aubert-Vázquez, Eduardo ; Valdés-Sosa, Pedro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-113c48f696d5976fbafd1ac59ed60276772082dbee0c778588874b6fa9c3829a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian model averaging</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Data Collection - statistics &amp; numerical data</topic><topic>Dominance, Cerebral - physiology</topic><topic>EEG</topic><topic>Electroencephalography - statistics &amp; numerical data</topic><topic>Evoked Potentials, Auditory - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Imaging, Three-Dimensional - statistics &amp; numerical data</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetoencephalography - statistics &amp; numerical data</topic><topic>Mathematical Computing</topic><topic>Medical imaging</topic><topic>MEG</topic><topic>Methods</topic><topic>Model comparison</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Occipital Lobe - physiology</topic><topic>Probability</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Thalamus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trujillo-Barreto, Nelson J.</creatorcontrib><creatorcontrib>Aubert-Vázquez, Eduardo</creatorcontrib><creatorcontrib>Valdés-Sosa, Pedro A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trujillo-Barreto, Nelson J.</au><au>Aubert-Vázquez, Eduardo</au><au>Valdés-Sosa, Pedro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian model averaging in EEG/MEG imaging</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>21</volume><issue>4</issue><spage>1300</spage><epage>1319</epage><pages>1300-1319</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In this paper, the Bayesian Theory is used to formulate the Inverse Problem (IP) of the EEG/MEG. This formulation offers a comparison framework for the wide range of inverse methods available and allows us to address the problem of model uncertainty that arises when dealing with different solutions for a single data. In this case, each model is defined by the set of assumptions of the inverse method used, as well as by the functional dependence between the data and the Primary Current Density (PCD) inside the brain. The key point is that the Bayesian Theory not only provides for posterior estimates of the parameters of interest (the PCD) for a given model, but also gives the possibility of finding posterior expected utilities unconditional on the models assumed. In the present work, this is achieved by considering a third level of inference that has been systematically omitted by previous Bayesian formulations of the IP. This level is known as Bayesian model averaging (BMA). The new approach is illustrated in the case of considering different anatomical constraints for solving the IP of the EEG in the frequency domain. This methodology allows us to address two of the main problems that affect linear inverse solutions (LIS): (a) the existence of ghost sources and (b) the tendency to underestimate deep activity. Both simulated and real experimental data are used to demonstrate the capabilities of the BMA approach, and some of the results are compared with the solutions obtained using the popular low-resolution electromagnetic tomography (LORETA) and its anatomically constraint version (cLORETA).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15050557</pmid><doi>10.1016/j.neuroimage.2003.11.008</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1300-1319
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_71793369
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Bayes Theorem
Bayesian analysis
Bayesian inference
Bayesian model averaging
Brain - physiology
Brain Mapping
Data Collection - statistics & numerical data
Dominance, Cerebral - physiology
EEG
Electroencephalography - statistics & numerical data
Evoked Potentials, Auditory - physiology
Humans
Hypotheses
Hypothesis testing
Image Processing, Computer-Assisted - statistics & numerical data
Imaging, Three-Dimensional - statistics & numerical data
Inverse problem
Inverse problems
Linear Models
Magnetic Resonance Imaging
Magnetoencephalography - statistics & numerical data
Mathematical Computing
Medical imaging
MEG
Methods
Model comparison
Models, Neurological
Nerve Net - physiology
Occipital Lobe - physiology
Probability
Reproducibility of Results
Signal Processing, Computer-Assisted
Thalamus - physiology
title Bayesian model averaging in EEG/MEG imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20model%20averaging%20in%20EEG/MEG%20imaging&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Trujillo-Barreto,%20Nelson%20J.&rft.date=2004-04-01&rft.volume=21&rft.issue=4&rft.spage=1300&rft.epage=1319&rft.pages=1300-1319&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.11.008&rft_dat=%3Cproquest_cross%3E3244686101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506787019&rft_id=info:pmid/15050557&rft_els_id=S1053811903007286&rfr_iscdi=true