Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo
Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2004-04, Vol.89 (2), p.324-336 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 2 |
container_start_page | 324 |
container_title | Journal of neurochemistry |
container_volume | 89 |
creator | Kim, Jin Seuk Chang, Mi‐Yoon Yu, In Tag Kim, Ju Hee Lee, Sang‐Hun Lee, Yong‐Sung Son, Hyeon |
description | Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1–3 mm) produced a significant increase in the number of bromodeoxyuridine (BrdU)‐positive cells in high‐density cultures, but did not increase clonal size in low‐density cultures. Lithium chloride at 1 mm (within the therapeutic range) also increased the number of cells double‐labeled with BrdU antibody and TuJ1 (a class III β‐tubulin antibody) in high‐density cultures and the number of TuJ1‐positive cells in a clone of low‐density cultures, whereas it decreased the number of glial fibrillary acidic protein‐positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindinD28k‐positive cells, and involved a phosphorylated extracellular signal‐regulated kinase and phosphorylated cyclic AMP response element‐binding protein‐dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindinD28k‐positive neuronal cell type. |
doi_str_mv | 10.1046/j.1471-4159.2004.02329.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71789612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71789612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3959-d5c345b7d732aee070b64ac803974025f5425cc62436d47e7cc649e9c5b28d343</originalsourceid><addsrcrecordid>eNqNkE2P0zAQhi0EYsvCX0C-wC3B324OHFC1fKmCC5wtx5lQV4kd7KS7_fc4tAKOnGaseWb86kEIU1JTItSbY02FppWgsqkZIaImjLOmfniENn8Gj9GGEMYqTgS7Qc9yPhJClVD0KbqhkkjFtNqg-72fD34ZcYYB3OxPMJyxDy6BzZBxgCXFYAfc-b6HBGH2dvYx4Njjg5-m6Ow4lfHKlTKl-AOCn2PCDoYh4zbOh3IOn_ycIrahuzxO8Tl60tshw4trvUXf3999232s9l8_fNq921eON7KpOum4kK3uNGcWgGjSKmHdlvBGC8JkLwWTzikmuOqEBl160UDjZMu2HRf8Fr2-3C3Rfi6QZzP6vGazAeKSjaZ62yjKCri9gC7FnBP0Zkp-tOlsKDGrdHM0q1uzujWrdPNbunkoqy-vfyztCN3fxavlAry6AjY7O_TJBufzP5wq9xQp3NsLd-8HOP93APP5y27t-C8YWJ8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71789612</pqid></control><display><type>article</type><title>Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jin Seuk ; Chang, Mi‐Yoon ; Yu, In Tag ; Kim, Ju Hee ; Lee, Sang‐Hun ; Lee, Yong‐Sung ; Son, Hyeon</creator><creatorcontrib>Kim, Jin Seuk ; Chang, Mi‐Yoon ; Yu, In Tag ; Kim, Ju Hee ; Lee, Sang‐Hun ; Lee, Yong‐Sung ; Son, Hyeon</creatorcontrib><description>Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1–3 mm) produced a significant increase in the number of bromodeoxyuridine (BrdU)‐positive cells in high‐density cultures, but did not increase clonal size in low‐density cultures. Lithium chloride at 1 mm (within the therapeutic range) also increased the number of cells double‐labeled with BrdU antibody and TuJ1 (a class III β‐tubulin antibody) in high‐density cultures and the number of TuJ1‐positive cells in a clone of low‐density cultures, whereas it decreased the number of glial fibrillary acidic protein‐positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindinD28k‐positive cells, and involved a phosphorylated extracellular signal‐regulated kinase and phosphorylated cyclic AMP response element‐binding protein‐dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindinD28k‐positive neuronal cell type.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2004.02329.x</identifier><identifier>PMID: 15056276</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Antigens, Differentiation - biosynthesis ; Astrocytes - cytology ; Astrocytes - metabolism ; Biological and medical sciences ; Bromodeoxyuridine ; calbindin ; Calbindin 1 ; Calbindins ; Cell Count ; Cell Differentiation - drug effects ; Cell Differentiation - physiology ; Cell differentiation, maturation, development, hematopoiesis ; Cell Division - drug effects ; Cell physiology ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein - metabolism ; dentate gyrus ; extracellular signal‐regulated kinase ; Fundamental and applied biological sciences. Psychology ; hippocampus ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - physiology ; Immunohistochemistry ; Isolated neuron and nerve. Neuroglia ; lithium ; Lithium - pharmacology ; Male ; Microtubule-Associated Proteins - biosynthesis ; Mitogen-Activated Protein Kinases - metabolism ; Molecular and cellular biology ; neurogenesis ; Neurons - cytology ; Neurons - metabolism ; rat ; Rats ; Rats, Sprague-Dawley ; S100 Calcium Binding Protein G - biosynthesis ; Signal Transduction - drug effects ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurochemistry, 2004-04, Vol.89 (2), p.324-336</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3959-d5c345b7d732aee070b64ac803974025f5425cc62436d47e7cc649e9c5b28d343</citedby><cites>FETCH-LOGICAL-c3959-d5c345b7d732aee070b64ac803974025f5425cc62436d47e7cc649e9c5b28d343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2004.02329.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2004.02329.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27926,27927,45576,45577,46411,46835</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15620060$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15056276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jin Seuk</creatorcontrib><creatorcontrib>Chang, Mi‐Yoon</creatorcontrib><creatorcontrib>Yu, In Tag</creatorcontrib><creatorcontrib>Kim, Ju Hee</creatorcontrib><creatorcontrib>Lee, Sang‐Hun</creatorcontrib><creatorcontrib>Lee, Yong‐Sung</creatorcontrib><creatorcontrib>Son, Hyeon</creatorcontrib><title>Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1–3 mm) produced a significant increase in the number of bromodeoxyuridine (BrdU)‐positive cells in high‐density cultures, but did not increase clonal size in low‐density cultures. Lithium chloride at 1 mm (within the therapeutic range) also increased the number of cells double‐labeled with BrdU antibody and TuJ1 (a class III β‐tubulin antibody) in high‐density cultures and the number of TuJ1‐positive cells in a clone of low‐density cultures, whereas it decreased the number of glial fibrillary acidic protein‐positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindinD28k‐positive cells, and involved a phosphorylated extracellular signal‐regulated kinase and phosphorylated cyclic AMP response element‐binding protein‐dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindinD28k‐positive neuronal cell type.</description><subject>Animals</subject><subject>Antigens, Differentiation - biosynthesis</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Biological and medical sciences</subject><subject>Bromodeoxyuridine</subject><subject>calbindin</subject><subject>Calbindin 1</subject><subject>Calbindins</subject><subject>Cell Count</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - physiology</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell Division - drug effects</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Cyclic AMP Response Element-Binding Protein - metabolism</subject><subject>dentate gyrus</subject><subject>extracellular signal‐regulated kinase</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiology</subject><subject>Immunohistochemistry</subject><subject>Isolated neuron and nerve. Neuroglia</subject><subject>lithium</subject><subject>Lithium - pharmacology</subject><subject>Male</subject><subject>Microtubule-Associated Proteins - biosynthesis</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Molecular and cellular biology</subject><subject>neurogenesis</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>rat</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>S100 Calcium Binding Protein G - biosynthesis</subject><subject>Signal Transduction - drug effects</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE2P0zAQhi0EYsvCX0C-wC3B324OHFC1fKmCC5wtx5lQV4kd7KS7_fc4tAKOnGaseWb86kEIU1JTItSbY02FppWgsqkZIaImjLOmfniENn8Gj9GGEMYqTgS7Qc9yPhJClVD0KbqhkkjFtNqg-72fD34ZcYYB3OxPMJyxDy6BzZBxgCXFYAfc-b6HBGH2dvYx4Njjg5-m6Ow4lfHKlTKl-AOCn2PCDoYh4zbOh3IOn_ycIrahuzxO8Tl60tshw4trvUXf3999232s9l8_fNq921eON7KpOum4kK3uNGcWgGjSKmHdlvBGC8JkLwWTzikmuOqEBl160UDjZMu2HRf8Fr2-3C3Rfi6QZzP6vGazAeKSjaZ62yjKCri9gC7FnBP0Zkp-tOlsKDGrdHM0q1uzujWrdPNbunkoqy-vfyztCN3fxavlAry6AjY7O_TJBufzP5wq9xQp3NsLd-8HOP93APP5y27t-C8YWJ8T</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Kim, Jin Seuk</creator><creator>Chang, Mi‐Yoon</creator><creator>Yu, In Tag</creator><creator>Kim, Ju Hee</creator><creator>Lee, Sang‐Hun</creator><creator>Lee, Yong‐Sung</creator><creator>Son, Hyeon</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200404</creationdate><title>Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo</title><author>Kim, Jin Seuk ; Chang, Mi‐Yoon ; Yu, In Tag ; Kim, Ju Hee ; Lee, Sang‐Hun ; Lee, Yong‐Sung ; Son, Hyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3959-d5c345b7d732aee070b64ac803974025f5425cc62436d47e7cc649e9c5b28d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Antigens, Differentiation - biosynthesis</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Biological and medical sciences</topic><topic>Bromodeoxyuridine</topic><topic>calbindin</topic><topic>Calbindin 1</topic><topic>Calbindins</topic><topic>Cell Count</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - physiology</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell Division - drug effects</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Cyclic AMP Response Element-Binding Protein - metabolism</topic><topic>dentate gyrus</topic><topic>extracellular signal‐regulated kinase</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiology</topic><topic>Immunohistochemistry</topic><topic>Isolated neuron and nerve. Neuroglia</topic><topic>lithium</topic><topic>Lithium - pharmacology</topic><topic>Male</topic><topic>Microtubule-Associated Proteins - biosynthesis</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Molecular and cellular biology</topic><topic>neurogenesis</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>rat</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>S100 Calcium Binding Protein G - biosynthesis</topic><topic>Signal Transduction - drug effects</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jin Seuk</creatorcontrib><creatorcontrib>Chang, Mi‐Yoon</creatorcontrib><creatorcontrib>Yu, In Tag</creatorcontrib><creatorcontrib>Kim, Ju Hee</creatorcontrib><creatorcontrib>Lee, Sang‐Hun</creatorcontrib><creatorcontrib>Lee, Yong‐Sung</creatorcontrib><creatorcontrib>Son, Hyeon</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jin Seuk</au><au>Chang, Mi‐Yoon</au><au>Yu, In Tag</au><au>Kim, Ju Hee</au><au>Lee, Sang‐Hun</au><au>Lee, Yong‐Sung</au><au>Son, Hyeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2004-04</date><risdate>2004</risdate><volume>89</volume><issue>2</issue><spage>324</spage><epage>336</epage><pages>324-336</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1–3 mm) produced a significant increase in the number of bromodeoxyuridine (BrdU)‐positive cells in high‐density cultures, but did not increase clonal size in low‐density cultures. Lithium chloride at 1 mm (within the therapeutic range) also increased the number of cells double‐labeled with BrdU antibody and TuJ1 (a class III β‐tubulin antibody) in high‐density cultures and the number of TuJ1‐positive cells in a clone of low‐density cultures, whereas it decreased the number of glial fibrillary acidic protein‐positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindinD28k‐positive cells, and involved a phosphorylated extracellular signal‐regulated kinase and phosphorylated cyclic AMP response element‐binding protein‐dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindinD28k‐positive neuronal cell type.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15056276</pmid><doi>10.1046/j.1471-4159.2004.02329.x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2004-04, Vol.89 (2), p.324-336 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_71789612 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Animals Antigens, Differentiation - biosynthesis Astrocytes - cytology Astrocytes - metabolism Biological and medical sciences Bromodeoxyuridine calbindin Calbindin 1 Calbindins Cell Count Cell Differentiation - drug effects Cell Differentiation - physiology Cell differentiation, maturation, development, hematopoiesis Cell Division - drug effects Cell physiology Cells, Cultured Cyclic AMP Response Element-Binding Protein - metabolism dentate gyrus extracellular signal‐regulated kinase Fundamental and applied biological sciences. Psychology hippocampus Hippocampus - cytology Hippocampus - drug effects Hippocampus - physiology Immunohistochemistry Isolated neuron and nerve. Neuroglia lithium Lithium - pharmacology Male Microtubule-Associated Proteins - biosynthesis Mitogen-Activated Protein Kinases - metabolism Molecular and cellular biology neurogenesis Neurons - cytology Neurons - metabolism rat Rats Rats, Sprague-Dawley S100 Calcium Binding Protein G - biosynthesis Signal Transduction - drug effects Stem Cells - cytology Stem Cells - drug effects Stem Cells - metabolism Vertebrates: nervous system and sense organs |
title | Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20selectively%20increases%20neuronal%20differentiation%20of%20hippocampal%20neural%20progenitor%20cells%20both%20in%20vitro%20and%20in%20vivo&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Kim,%20Jin%20Seuk&rft.date=2004-04&rft.volume=89&rft.issue=2&rft.spage=324&rft.epage=336&rft.pages=324-336&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2004.02329.x&rft_dat=%3Cproquest_cross%3E71789612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71789612&rft_id=info:pmid/15056276&rfr_iscdi=true |