Structure Distribution in an Elastin-Mimetic Peptide (VPGVG)3 Investigated by Solid-State NMR

Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C−H and C−N distances between the V6 carbonyl a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2004-04, Vol.126 (13), p.4199-4210
Hauptverfasser: Yao, X. L, Hong, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4210
container_issue 13
container_start_page 4199
container_title Journal of the American Chemical Society
container_volume 126
creator Yao, X. L
Hong, M
description Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C−H and C−N distances between the V6 carbonyl and the V9 amide segment were measured using 13C−15N and 13C−1H rotational-echo double-resonance experiments. The results indicate the coexistence of two types of intramolecular distances:  a third of the molecules have short C−H and C−N distances of 3.3 ± 0.2 and 4.3 ± 0.2 Å, respectively, while the rest have longer distances of about 7 Å. Complementing the distance constraints, we measured the (φ, ψ) torsion angles of the central pentameric unit using dipolar correlation NMR. The ψ-angles of P7 and G8 are predominantly ∼150°, thus restricting the majority of the peptide to be extended. Combining all torsion angles measured for the five residues, the G8 Cα chemical shift, and the V6−V9 distances, we obtained a bimodal structure distribution for the PG residues in VPGVG. The minor form is a compact structure with a V6−V9 CO−HN hydrogen bond and can be either a type II β-turn or a previously unidentified turn with Pro (φ = −70°, ψ = 20 ± 20°) and Gly (φ = −100 ± 20°, ψ = −20 ± 20°). The major form is an extended and distorted β-strand without a V6−V9 hydrogen bond and differs from the ideal parallel and antiparallel β-strands. The other three residues in the VPGVG unit mainly adopt antiparallel β-sheet torsion angles. Since (VPGVG)3 has the same 13C and 15N isotropic and anisotropic chemical shifts as the elastin-mimetic protein (VPGXG) n (X = V and K, n = 195), the observed conformational distribution around Pro and Gly sheds light on the molecular mechanism of elastin elasticity.
doi_str_mv 10.1021/ja036686n
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71788512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71788512</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-ad1815beecf96ecb9e8738f4d4c4c4a01cec4cc204d67a82fb9ba26a81b5f5783</originalsourceid><addsrcrecordid>eNptkMFO3DAURS1UBANl0R9A3rQqi7R2HDvOElEYEDPtiAALpMp6cRzkacaZ2k5V_h6jGUEX1Vv4Pfno6uog9IGSL5Tk9OsSCBNCCreDJpTnJOM0F-_QhBCSZ6UUbB8dhLBMZ5FLuof2KSecCVJN0M86-lHH0Rv8zYbobTNGOzhsHQaHz3sI0bpsblcmWo0XZh1ta_Dn-8X0fnrC8JX7YxLxCNG0uHnC9dDbNqtjuvH3-c17tNtBH8zR9j1Edxfnt2eX2ezH9OrsdJZBahEzaKmkvDFGd5UwuqmMLJnsirbQaYBQbdKic1K0ogSZd03VQC5A0oZ3vJTsEH3a5K798HtMjdTKBm36HpwZxqBKWkqZpCTwZANqP4TgTafW3q7APylK1ItL9eoyscfb0LFZmfaN3MpLwMctAEFD33lw2oZ_OFFIxlnisg2XBJu_r__gfylRspKr20WtZtVDfT2V12r-lgs6qOUwepfc_afgM6gXltM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71788512</pqid></control><display><type>article</type><title>Structure Distribution in an Elastin-Mimetic Peptide (VPGVG)3 Investigated by Solid-State NMR</title><source>ACS Publications</source><source>MEDLINE</source><creator>Yao, X. L ; Hong, M</creator><creatorcontrib>Yao, X. L ; Hong, M</creatorcontrib><description>Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C−H and C−N distances between the V6 carbonyl and the V9 amide segment were measured using 13C−15N and 13C−1H rotational-echo double-resonance experiments. The results indicate the coexistence of two types of intramolecular distances:  a third of the molecules have short C−H and C−N distances of 3.3 ± 0.2 and 4.3 ± 0.2 Å, respectively, while the rest have longer distances of about 7 Å. Complementing the distance constraints, we measured the (φ, ψ) torsion angles of the central pentameric unit using dipolar correlation NMR. The ψ-angles of P7 and G8 are predominantly ∼150°, thus restricting the majority of the peptide to be extended. Combining all torsion angles measured for the five residues, the G8 Cα chemical shift, and the V6−V9 distances, we obtained a bimodal structure distribution for the PG residues in VPGVG. The minor form is a compact structure with a V6−V9 CO−HN hydrogen bond and can be either a type II β-turn or a previously unidentified turn with Pro (φ = −70°, ψ = 20 ± 20°) and Gly (φ = −100 ± 20°, ψ = −20 ± 20°). The major form is an extended and distorted β-strand without a V6−V9 hydrogen bond and differs from the ideal parallel and antiparallel β-strands. The other three residues in the VPGVG unit mainly adopt antiparallel β-sheet torsion angles. Since (VPGVG)3 has the same 13C and 15N isotropic and anisotropic chemical shifts as the elastin-mimetic protein (VPGXG) n (X = V and K, n = 195), the observed conformational distribution around Pro and Gly sheds light on the molecular mechanism of elastin elasticity.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja036686n</identifier><identifier>PMID: 15053609</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Conformational dynamics in molecular biology ; Elastin - chemistry ; Fundamental and applied biological sciences. Psychology ; Molecular biophysics ; Nuclear Magnetic Resonance, Biomolecular - methods ; Peptides - chemistry ; Protein Structure, Secondary</subject><ispartof>Journal of the American Chemical Society, 2004-04, Vol.126 (13), p.4199-4210</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-ad1815beecf96ecb9e8738f4d4c4c4a01cec4cc204d67a82fb9ba26a81b5f5783</citedby><cites>FETCH-LOGICAL-a360t-ad1815beecf96ecb9e8738f4d4c4c4a01cec4cc204d67a82fb9ba26a81b5f5783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja036686n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja036686n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15648353$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15053609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, X. L</creatorcontrib><creatorcontrib>Hong, M</creatorcontrib><title>Structure Distribution in an Elastin-Mimetic Peptide (VPGVG)3 Investigated by Solid-State NMR</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C−H and C−N distances between the V6 carbonyl and the V9 amide segment were measured using 13C−15N and 13C−1H rotational-echo double-resonance experiments. The results indicate the coexistence of two types of intramolecular distances:  a third of the molecules have short C−H and C−N distances of 3.3 ± 0.2 and 4.3 ± 0.2 Å, respectively, while the rest have longer distances of about 7 Å. Complementing the distance constraints, we measured the (φ, ψ) torsion angles of the central pentameric unit using dipolar correlation NMR. The ψ-angles of P7 and G8 are predominantly ∼150°, thus restricting the majority of the peptide to be extended. Combining all torsion angles measured for the five residues, the G8 Cα chemical shift, and the V6−V9 distances, we obtained a bimodal structure distribution for the PG residues in VPGVG. The minor form is a compact structure with a V6−V9 CO−HN hydrogen bond and can be either a type II β-turn or a previously unidentified turn with Pro (φ = −70°, ψ = 20 ± 20°) and Gly (φ = −100 ± 20°, ψ = −20 ± 20°). The major form is an extended and distorted β-strand without a V6−V9 hydrogen bond and differs from the ideal parallel and antiparallel β-strands. The other three residues in the VPGVG unit mainly adopt antiparallel β-sheet torsion angles. Since (VPGVG)3 has the same 13C and 15N isotropic and anisotropic chemical shifts as the elastin-mimetic protein (VPGXG) n (X = V and K, n = 195), the observed conformational distribution around Pro and Gly sheds light on the molecular mechanism of elastin elasticity.</description><subject>Biological and medical sciences</subject><subject>Conformational dynamics in molecular biology</subject><subject>Elastin - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Molecular biophysics</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Peptides - chemistry</subject><subject>Protein Structure, Secondary</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMFO3DAURS1UBANl0R9A3rQqi7R2HDvOElEYEDPtiAALpMp6cRzkacaZ2k5V_h6jGUEX1Vv4Pfno6uog9IGSL5Tk9OsSCBNCCreDJpTnJOM0F-_QhBCSZ6UUbB8dhLBMZ5FLuof2KSecCVJN0M86-lHH0Rv8zYbobTNGOzhsHQaHz3sI0bpsblcmWo0XZh1ta_Dn-8X0fnrC8JX7YxLxCNG0uHnC9dDbNqtjuvH3-c17tNtBH8zR9j1Edxfnt2eX2ezH9OrsdJZBahEzaKmkvDFGd5UwuqmMLJnsirbQaYBQbdKic1K0ogSZd03VQC5A0oZ3vJTsEH3a5K798HtMjdTKBm36HpwZxqBKWkqZpCTwZANqP4TgTafW3q7APylK1ItL9eoyscfb0LFZmfaN3MpLwMctAEFD33lw2oZ_OFFIxlnisg2XBJu_r__gfylRspKr20WtZtVDfT2V12r-lgs6qOUwepfc_afgM6gXltM</recordid><startdate>20040407</startdate><enddate>20040407</enddate><creator>Yao, X. L</creator><creator>Hong, M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040407</creationdate><title>Structure Distribution in an Elastin-Mimetic Peptide (VPGVG)3 Investigated by Solid-State NMR</title><author>Yao, X. L ; Hong, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-ad1815beecf96ecb9e8738f4d4c4c4a01cec4cc204d67a82fb9ba26a81b5f5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Conformational dynamics in molecular biology</topic><topic>Elastin - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Molecular biophysics</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Peptides - chemistry</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, X. L</creatorcontrib><creatorcontrib>Hong, M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, X. L</au><au>Hong, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Distribution in an Elastin-Mimetic Peptide (VPGVG)3 Investigated by Solid-State NMR</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2004-04-07</date><risdate>2004</risdate><volume>126</volume><issue>13</issue><spage>4199</spage><epage>4210</epage><pages>4199-4210</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C−H and C−N distances between the V6 carbonyl and the V9 amide segment were measured using 13C−15N and 13C−1H rotational-echo double-resonance experiments. The results indicate the coexistence of two types of intramolecular distances:  a third of the molecules have short C−H and C−N distances of 3.3 ± 0.2 and 4.3 ± 0.2 Å, respectively, while the rest have longer distances of about 7 Å. Complementing the distance constraints, we measured the (φ, ψ) torsion angles of the central pentameric unit using dipolar correlation NMR. The ψ-angles of P7 and G8 are predominantly ∼150°, thus restricting the majority of the peptide to be extended. Combining all torsion angles measured for the five residues, the G8 Cα chemical shift, and the V6−V9 distances, we obtained a bimodal structure distribution for the PG residues in VPGVG. The minor form is a compact structure with a V6−V9 CO−HN hydrogen bond and can be either a type II β-turn or a previously unidentified turn with Pro (φ = −70°, ψ = 20 ± 20°) and Gly (φ = −100 ± 20°, ψ = −20 ± 20°). The major form is an extended and distorted β-strand without a V6−V9 hydrogen bond and differs from the ideal parallel and antiparallel β-strands. The other three residues in the VPGVG unit mainly adopt antiparallel β-sheet torsion angles. Since (VPGVG)3 has the same 13C and 15N isotropic and anisotropic chemical shifts as the elastin-mimetic protein (VPGXG) n (X = V and K, n = 195), the observed conformational distribution around Pro and Gly sheds light on the molecular mechanism of elastin elasticity.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>15053609</pmid><doi>10.1021/ja036686n</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2004-04, Vol.126 (13), p.4199-4210
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_71788512
source ACS Publications; MEDLINE
subjects Biological and medical sciences
Conformational dynamics in molecular biology
Elastin - chemistry
Fundamental and applied biological sciences. Psychology
Molecular biophysics
Nuclear Magnetic Resonance, Biomolecular - methods
Peptides - chemistry
Protein Structure, Secondary
title Structure Distribution in an Elastin-Mimetic Peptide (VPGVG)3 Investigated by Solid-State NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Distribution%20in%20an%20Elastin-Mimetic%20Peptide%20(VPGVG)3%20Investigated%20by%20Solid-State%20NMR&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Yao,%20X.%20L&rft.date=2004-04-07&rft.volume=126&rft.issue=13&rft.spage=4199&rft.epage=4210&rft.pages=4199-4210&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja036686n&rft_dat=%3Cproquest_cross%3E71788512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71788512&rft_id=info:pmid/15053609&rfr_iscdi=true