Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compare...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2004-04, Vol.21 (4), p.1428-1442 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1442 |
---|---|
container_issue | 4 |
container_start_page | 1428 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 21 |
creator | Rohlfing, Torsten Brandt, Robert Menzel, Randolf Maurer, Calvin R. |
description | This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired
t test,
P < 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy. |
doi_str_mv | 10.1016/j.neuroimage.2003.11.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71778893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903007316</els_id><sourcerecordid>3244232601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</originalsourceid><addsrcrecordid>eNqFkctu1TAQhi0EoqXwCsgSEruEmfjk4iVU5SJVYgNry3HGBx8lcbCdor5BHxunOVIlNsgL2-Nv5vfMzxhHKBGw-XAqZ1qDd5M-UlkBiBKxBIRn7BJB1oWs2-r5dq5F0SHKC_YqxhMASDx0L9kF1pBX012yh5s7Pa46OT9zb7lOo4480kjmMRRT0ImOjiK3PuzPRa8jDfxRPKPHiea0F_jj0i-ul2V0Zg8kz42frTd65JMzwUfjl_s9NW56PRHvg3ZzfM1eWD1GenPer9jPzzc_rr8Wt9-_fLv-eFsYgSIVCKBtW0mrTVODRmko34Touqa2dQ99r0XdUzsMVtJQSThA1YCQJCpsjRHiir3f6y7B_14pJjW5aGgc9Ux-jarFtu06uYHv_gFPfg1z_pvK42sakAchM9Xt1NZcDGTVEnJ74V4hqM0rdVJPXqnNK4Woslc59e1ZYO0nGp4Sz-Zk4NMOUJ7HnaOgonE0GxpcyP6owbv_q_wFCcGs6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506609439</pqid></control><display><type>article</type><title>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rohlfing, Torsten ; Brandt, Robert ; Menzel, Randolf ; Maurer, Calvin R.</creator><creatorcontrib>Rohlfing, Torsten ; Brandt, Robert ; Menzel, Randolf ; Maurer, Calvin R.</creatorcontrib><description>This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired
t test,
P < 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.11.010</identifier><identifier>PMID: 15050568</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Atlas selection ; Atlas-based segmentation ; Bee brain ; Bees - anatomy & histology ; Brain ; Brain - anatomy & histology ; Brain Mapping ; Confocal microscopy imaging ; Coordinate transformations ; Databases as Topic ; Dominance, Cerebral - physiology ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Methods ; Microscopy ; Microscopy, Confocal ; Nonrigid image registration ; Reference Values ; Reproducibility of Results</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1428-1442</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</citedby><cites>FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811903007316$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15050568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohlfing, Torsten</creatorcontrib><creatorcontrib>Brandt, Robert</creatorcontrib><creatorcontrib>Menzel, Randolf</creatorcontrib><creatorcontrib>Maurer, Calvin R.</creatorcontrib><title>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired
t test,
P < 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Atlas selection</subject><subject>Atlas-based segmentation</subject><subject>Bee brain</subject><subject>Bees - anatomy & histology</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain Mapping</subject><subject>Confocal microscopy imaging</subject><subject>Coordinate transformations</subject><subject>Databases as Topic</subject><subject>Dominance, Cerebral - physiology</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Nonrigid image registration</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkctu1TAQhi0EoqXwCsgSEruEmfjk4iVU5SJVYgNry3HGBx8lcbCdor5BHxunOVIlNsgL2-Nv5vfMzxhHKBGw-XAqZ1qDd5M-UlkBiBKxBIRn7BJB1oWs2-r5dq5F0SHKC_YqxhMASDx0L9kF1pBX012yh5s7Pa46OT9zb7lOo4480kjmMRRT0ImOjiK3PuzPRa8jDfxRPKPHiea0F_jj0i-ul2V0Zg8kz42frTd65JMzwUfjl_s9NW56PRHvg3ZzfM1eWD1GenPer9jPzzc_rr8Wt9-_fLv-eFsYgSIVCKBtW0mrTVODRmko34Touqa2dQ99r0XdUzsMVtJQSThA1YCQJCpsjRHiir3f6y7B_14pJjW5aGgc9Ux-jarFtu06uYHv_gFPfg1z_pvK42sakAchM9Xt1NZcDGTVEnJ74V4hqM0rdVJPXqnNK4Woslc59e1ZYO0nGp4Sz-Zk4NMOUJ7HnaOgonE0GxpcyP6owbv_q_wFCcGs6g</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Rohlfing, Torsten</creator><creator>Brandt, Robert</creator><creator>Menzel, Randolf</creator><creator>Maurer, Calvin R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200404</creationdate><title>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</title><author>Rohlfing, Torsten ; Brandt, Robert ; Menzel, Randolf ; Maurer, Calvin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Atlas selection</topic><topic>Atlas-based segmentation</topic><topic>Bee brain</topic><topic>Bees - anatomy & histology</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain Mapping</topic><topic>Confocal microscopy imaging</topic><topic>Coordinate transformations</topic><topic>Databases as Topic</topic><topic>Dominance, Cerebral - physiology</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Nonrigid image registration</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohlfing, Torsten</creatorcontrib><creatorcontrib>Brandt, Robert</creatorcontrib><creatorcontrib>Menzel, Randolf</creatorcontrib><creatorcontrib>Maurer, Calvin R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohlfing, Torsten</au><au>Brandt, Robert</au><au>Menzel, Randolf</au><au>Maurer, Calvin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-04</date><risdate>2004</risdate><volume>21</volume><issue>4</issue><spage>1428</spage><epage>1442</epage><pages>1428-1442</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired
t test,
P < 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15050568</pmid><doi>10.1016/j.neuroimage.2003.11.010</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1428-1442 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_71778893 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Animals Atlas selection Atlas-based segmentation Bee brain Bees - anatomy & histology Brain Brain - anatomy & histology Brain Mapping Confocal microscopy imaging Coordinate transformations Databases as Topic Dominance, Cerebral - physiology Image Interpretation, Computer-Assisted Image Processing, Computer-Assisted Imaging, Three-Dimensional Methods Microscopy Microscopy, Confocal Nonrigid image registration Reference Values Reproducibility of Results |
title | Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20atlas%20selection%20strategies%20for%20atlas-based%20image%20segmentation%20with%20application%20to%20confocal%20microscopy%20images%20of%20bee%20brains&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Rohlfing,%20Torsten&rft.date=2004-04&rft.volume=21&rft.issue=4&rft.spage=1428&rft.epage=1442&rft.pages=1428-1442&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.11.010&rft_dat=%3Cproquest_cross%3E3244232601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506609439&rft_id=info:pmid/15050568&rft_els_id=S1053811903007316&rfr_iscdi=true |