Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains

This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2004-04, Vol.21 (4), p.1428-1442
Hauptverfasser: Rohlfing, Torsten, Brandt, Robert, Menzel, Randolf, Maurer, Calvin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1442
container_issue 4
container_start_page 1428
container_title NeuroImage (Orlando, Fla.)
container_volume 21
creator Rohlfing, Torsten
Brandt, Robert
Menzel, Randolf
Maurer, Calvin R.
description This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired t test, P < 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy.
doi_str_mv 10.1016/j.neuroimage.2003.11.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71778893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903007316</els_id><sourcerecordid>3244232601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</originalsourceid><addsrcrecordid>eNqFkctu1TAQhi0EoqXwCsgSEruEmfjk4iVU5SJVYgNry3HGBx8lcbCdor5BHxunOVIlNsgL2-Nv5vfMzxhHKBGw-XAqZ1qDd5M-UlkBiBKxBIRn7BJB1oWs2-r5dq5F0SHKC_YqxhMASDx0L9kF1pBX012yh5s7Pa46OT9zb7lOo4480kjmMRRT0ImOjiK3PuzPRa8jDfxRPKPHiea0F_jj0i-ul2V0Zg8kz42frTd65JMzwUfjl_s9NW56PRHvg3ZzfM1eWD1GenPer9jPzzc_rr8Wt9-_fLv-eFsYgSIVCKBtW0mrTVODRmko34Touqa2dQ99r0XdUzsMVtJQSThA1YCQJCpsjRHiir3f6y7B_14pJjW5aGgc9Ux-jarFtu06uYHv_gFPfg1z_pvK42sakAchM9Xt1NZcDGTVEnJ74V4hqM0rdVJPXqnNK4Woslc59e1ZYO0nGp4Sz-Zk4NMOUJ7HnaOgonE0GxpcyP6owbv_q_wFCcGs6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506609439</pqid></control><display><type>article</type><title>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rohlfing, Torsten ; Brandt, Robert ; Menzel, Randolf ; Maurer, Calvin R.</creator><creatorcontrib>Rohlfing, Torsten ; Brandt, Robert ; Menzel, Randolf ; Maurer, Calvin R.</creatorcontrib><description>This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired t test, P &lt; 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.11.010</identifier><identifier>PMID: 15050568</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Atlas selection ; Atlas-based segmentation ; Bee brain ; Bees - anatomy &amp; histology ; Brain ; Brain - anatomy &amp; histology ; Brain Mapping ; Confocal microscopy imaging ; Coordinate transformations ; Databases as Topic ; Dominance, Cerebral - physiology ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; Methods ; Microscopy ; Microscopy, Confocal ; Nonrigid image registration ; Reference Values ; Reproducibility of Results</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1428-1442</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</citedby><cites>FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811903007316$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15050568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohlfing, Torsten</creatorcontrib><creatorcontrib>Brandt, Robert</creatorcontrib><creatorcontrib>Menzel, Randolf</creatorcontrib><creatorcontrib>Maurer, Calvin R.</creatorcontrib><title>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired t test, P &lt; 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Atlas selection</subject><subject>Atlas-based segmentation</subject><subject>Bee brain</subject><subject>Bees - anatomy &amp; histology</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain Mapping</subject><subject>Confocal microscopy imaging</subject><subject>Coordinate transformations</subject><subject>Databases as Topic</subject><subject>Dominance, Cerebral - physiology</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Nonrigid image registration</subject><subject>Reference Values</subject><subject>Reproducibility of Results</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkctu1TAQhi0EoqXwCsgSEruEmfjk4iVU5SJVYgNry3HGBx8lcbCdor5BHxunOVIlNsgL2-Nv5vfMzxhHKBGw-XAqZ1qDd5M-UlkBiBKxBIRn7BJB1oWs2-r5dq5F0SHKC_YqxhMASDx0L9kF1pBX012yh5s7Pa46OT9zb7lOo4480kjmMRRT0ImOjiK3PuzPRa8jDfxRPKPHiea0F_jj0i-ul2V0Zg8kz42frTd65JMzwUfjl_s9NW56PRHvg3ZzfM1eWD1GenPer9jPzzc_rr8Wt9-_fLv-eFsYgSIVCKBtW0mrTVODRmko34Touqa2dQ99r0XdUzsMVtJQSThA1YCQJCpsjRHiir3f6y7B_14pJjW5aGgc9Ux-jarFtu06uYHv_gFPfg1z_pvK42sakAchM9Xt1NZcDGTVEnJ74V4hqM0rdVJPXqnNK4Woslc59e1ZYO0nGp4Sz-Zk4NMOUJ7HnaOgonE0GxpcyP6owbv_q_wFCcGs6g</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Rohlfing, Torsten</creator><creator>Brandt, Robert</creator><creator>Menzel, Randolf</creator><creator>Maurer, Calvin R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200404</creationdate><title>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</title><author>Rohlfing, Torsten ; Brandt, Robert ; Menzel, Randolf ; Maurer, Calvin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-100af729fac650a19ce729338865f5b0bba35be7ddf9ed2904026039e3217cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Atlas selection</topic><topic>Atlas-based segmentation</topic><topic>Bee brain</topic><topic>Bees - anatomy &amp; histology</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain Mapping</topic><topic>Confocal microscopy imaging</topic><topic>Coordinate transformations</topic><topic>Databases as Topic</topic><topic>Dominance, Cerebral - physiology</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Nonrigid image registration</topic><topic>Reference Values</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohlfing, Torsten</creatorcontrib><creatorcontrib>Brandt, Robert</creatorcontrib><creatorcontrib>Menzel, Randolf</creatorcontrib><creatorcontrib>Maurer, Calvin R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohlfing, Torsten</au><au>Brandt, Robert</au><au>Menzel, Randolf</au><au>Maurer, Calvin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-04</date><risdate>2004</risdate><volume>21</volume><issue>4</issue><spage>1428</spage><epage>1442</epage><pages>1428-1442</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image (IND), registration to an average-shape atlas image (AVG), registration to the most similar image from a database of individual atlas images (SIM), and registration to all images from a database of individual atlas images with subsequent multi-classifier decision fusion (MUL). The MUL strategy is a novel application of multi-classifier techniques, which are common in pattern recognition, to atlas-based segmentation. For each atlas selection strategy, the segmentation performance of the algorithm was quantified by the similarity index (SI) between the automatic segmentation result and a manually generated gold standard. The best segmentation accuracy was achieved using the MUL paradigm, which resulted in a mean similarity index value between manual and automatic segmentation of 0.86 (AVG, 0.84; SIM, 0.82; IND, 0.81). The superiority of the MUL strategy over the other three methods is statistically significant (two-sided paired t test, P &lt; 0.001). Both the MUL and AVG strategies performed better than the best possible SIM and IND strategies with optimal a posteriori atlas selection (mean similarity index for optimal SIM, 0.83; for optimal IND, 0.81). Our findings show that atlas selection is an important issue in atlas-based segmentation and that, in particular, multi-classifier techniques can substantially increase the segmentation accuracy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15050568</pmid><doi>10.1016/j.neuroimage.2003.11.010</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2004-04, Vol.21 (4), p.1428-1442
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_71778893
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Animals
Atlas selection
Atlas-based segmentation
Bee brain
Bees - anatomy & histology
Brain
Brain - anatomy & histology
Brain Mapping
Confocal microscopy imaging
Coordinate transformations
Databases as Topic
Dominance, Cerebral - physiology
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Methods
Microscopy
Microscopy, Confocal
Nonrigid image registration
Reference Values
Reproducibility of Results
title Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20atlas%20selection%20strategies%20for%20atlas-based%20image%20segmentation%20with%20application%20to%20confocal%20microscopy%20images%20of%20bee%20brains&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Rohlfing,%20Torsten&rft.date=2004-04&rft.volume=21&rft.issue=4&rft.spage=1428&rft.epage=1442&rft.pages=1428-1442&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.11.010&rft_dat=%3Cproquest_cross%3E3244232601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506609439&rft_id=info:pmid/15050568&rft_els_id=S1053811903007316&rfr_iscdi=true