An efficient learning algorithm for improving generalization performance of radial basis function neural networks
This paper presents an efficient recursive learning algorithm for improving generalization performance of radial basis function (RBF) neural networks. The approach combines the rival penalized competitive learning (PRCL) [Xu, L., Kizyzak, A. & Oja, E. (1993). Rival penalized competitive learning...
Gespeichert in:
Veröffentlicht in: | Neural networks 2000-05, Vol.13 (4), p.545-553 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 4 |
container_start_page | 545 |
container_title | Neural networks |
container_volume | 13 |
creator | Wang, Zheng-ou Zhu, Tao |
description | This paper presents an efficient recursive learning algorithm for improving generalization performance of radial basis function (RBF) neural networks. The approach combines the rival penalized competitive learning (PRCL) [Xu, L., Kizyzak, A. & Oja, E. (1993). Rival penalized competitive learning for clustering analysis, RBF net and curve detection, IEEE Transactions on Neural Networks, 4, 636–649] and the regularized least squares (RLS) to provide an efficient and powerful procedure for constructing a minimal RBF network that generalizes very well. The RPCL selects the number of hidden units of network and adjusts centers, while the RLS constructs the parsimonious network and estimates the connection weights. In the RLS we derived a simple recursive algorithm, which needs no matrix calculation, and so largely reduces the computational cost. This combined algorithm significantly enhances the generalization performance and the real-time capability of the RBF networks. Simulation results of three different problems demonstrate much better generalization performance of the present algorithm over other existing similar algorithms. |
doi_str_mv | 10.1016/S0893-6080(00)00029-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71776885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608000000290</els_id><sourcerecordid>27515936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-7cfe47c006fdebe6833bab27dece1a30e59d31d9fad104b86b104ed400f65d503</originalsourceid><addsrcrecordid>eNqFkUFrFTEUhYMo9ln9CUoWIroYvZnMJJNVKUVtoeBCXYdMcvOMzmRek5kW--vNvPdQd4XAgeS7uYdzCHnJ4D0DJj58hU7xSkAHbwHeAUCtKnhENqyTqqplVz8mm7_ICXmW888Cia7hT8kJA9UIrtSG3JxHit4HGzDOdECTYohbaobtlML8Y6R-SjSMuzTdrvdbjJjMEO7NHKZId5jK-2iiRTp5mowLZqC9ySFTv0S7hyIuZaTIfDelX_k5eeLNkPHFUU_J908fv11cVtdfPl9dnF9XtmVirqT12EhbLHuHPYqO8970tXRokRkO2CrHmVPeOAZN34m-CLoGwIvWtcBPyZvDv8X7zYJ51mPIFofBRJyWrCWTUnRd-yBYy5a1iosCtgfQpinnhF7vUhhN-q0Z6LUUvS9Fr4lrWE8pRa9OXh0XLP2I7r-pQwsFeH0ETLZm8KkEGvI_ruFK7rGzA4YlttuASee1NosuJLSzdlN4wMkfp4urrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27515936</pqid></control><display><type>article</type><title>An efficient learning algorithm for improving generalization performance of radial basis function neural networks</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Zheng-ou ; Zhu, Tao</creator><creatorcontrib>Wang, Zheng-ou ; Zhu, Tao</creatorcontrib><description>This paper presents an efficient recursive learning algorithm for improving generalization performance of radial basis function (RBF) neural networks. The approach combines the rival penalized competitive learning (PRCL) [Xu, L., Kizyzak, A. & Oja, E. (1993). Rival penalized competitive learning for clustering analysis, RBF net and curve detection, IEEE Transactions on Neural Networks, 4, 636–649] and the regularized least squares (RLS) to provide an efficient and powerful procedure for constructing a minimal RBF network that generalizes very well. The RPCL selects the number of hidden units of network and adjusts centers, while the RLS constructs the parsimonious network and estimates the connection weights. In the RLS we derived a simple recursive algorithm, which needs no matrix calculation, and so largely reduces the computational cost. This combined algorithm significantly enhances the generalization performance and the real-time capability of the RBF networks. Simulation results of three different problems demonstrate much better generalization performance of the present algorithm over other existing similar algorithms.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(00)00029-0</identifier><identifier>PMID: 10946399</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Computer Simulation ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Generalization performance ; Least-Squares Analysis ; Linear Models ; Neural networks ; Neural Networks (Computer) ; Radial basis function neural network ; Real-time capability ; Recursive algorithm ; Regularized least squares ; Rival penalized competitive learning</subject><ispartof>Neural networks, 2000-05, Vol.13 (4), p.545-553</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-7cfe47c006fdebe6833bab27dece1a30e59d31d9fad104b86b104ed400f65d503</citedby><cites>FETCH-LOGICAL-c516t-7cfe47c006fdebe6833bab27dece1a30e59d31d9fad104b86b104ed400f65d503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(00)00029-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1439799$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10946399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zheng-ou</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><title>An efficient learning algorithm for improving generalization performance of radial basis function neural networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper presents an efficient recursive learning algorithm for improving generalization performance of radial basis function (RBF) neural networks. The approach combines the rival penalized competitive learning (PRCL) [Xu, L., Kizyzak, A. & Oja, E. (1993). Rival penalized competitive learning for clustering analysis, RBF net and curve detection, IEEE Transactions on Neural Networks, 4, 636–649] and the regularized least squares (RLS) to provide an efficient and powerful procedure for constructing a minimal RBF network that generalizes very well. The RPCL selects the number of hidden units of network and adjusts centers, while the RLS constructs the parsimonious network and estimates the connection weights. In the RLS we derived a simple recursive algorithm, which needs no matrix calculation, and so largely reduces the computational cost. This combined algorithm significantly enhances the generalization performance and the real-time capability of the RBF networks. Simulation results of three different problems demonstrate much better generalization performance of the present algorithm over other existing similar algorithms.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer Simulation</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Generalization performance</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Radial basis function neural network</subject><subject>Real-time capability</subject><subject>Recursive algorithm</subject><subject>Regularized least squares</subject><subject>Rival penalized competitive learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFrFTEUhYMo9ln9CUoWIroYvZnMJJNVKUVtoeBCXYdMcvOMzmRek5kW--vNvPdQd4XAgeS7uYdzCHnJ4D0DJj58hU7xSkAHbwHeAUCtKnhENqyTqqplVz8mm7_ICXmW888Cia7hT8kJA9UIrtSG3JxHit4HGzDOdECTYohbaobtlML8Y6R-SjSMuzTdrvdbjJjMEO7NHKZId5jK-2iiRTp5mowLZqC9ySFTv0S7hyIuZaTIfDelX_k5eeLNkPHFUU_J908fv11cVtdfPl9dnF9XtmVirqT12EhbLHuHPYqO8970tXRokRkO2CrHmVPeOAZN34m-CLoGwIvWtcBPyZvDv8X7zYJ51mPIFofBRJyWrCWTUnRd-yBYy5a1iosCtgfQpinnhF7vUhhN-q0Z6LUUvS9Fr4lrWE8pRa9OXh0XLP2I7r-pQwsFeH0ETLZm8KkEGvI_ruFK7rGzA4YlttuASee1NosuJLSzdlN4wMkfp4urrA</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Wang, Zheng-ou</creator><creator>Zhu, Tao</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>An efficient learning algorithm for improving generalization performance of radial basis function neural networks</title><author>Wang, Zheng-ou ; Zhu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-7cfe47c006fdebe6833bab27dece1a30e59d31d9fad104b86b104ed400f65d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer Simulation</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Generalization performance</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Radial basis function neural network</topic><topic>Real-time capability</topic><topic>Recursive algorithm</topic><topic>Regularized least squares</topic><topic>Rival penalized competitive learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheng-ou</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zheng-ou</au><au>Zhu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient learning algorithm for improving generalization performance of radial basis function neural networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>13</volume><issue>4</issue><spage>545</spage><epage>553</epage><pages>545-553</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper presents an efficient recursive learning algorithm for improving generalization performance of radial basis function (RBF) neural networks. The approach combines the rival penalized competitive learning (PRCL) [Xu, L., Kizyzak, A. & Oja, E. (1993). Rival penalized competitive learning for clustering analysis, RBF net and curve detection, IEEE Transactions on Neural Networks, 4, 636–649] and the regularized least squares (RLS) to provide an efficient and powerful procedure for constructing a minimal RBF network that generalizes very well. The RPCL selects the number of hidden units of network and adjusts centers, while the RLS constructs the parsimonious network and estimates the connection weights. In the RLS we derived a simple recursive algorithm, which needs no matrix calculation, and so largely reduces the computational cost. This combined algorithm significantly enhances the generalization performance and the real-time capability of the RBF networks. Simulation results of three different problems demonstrate much better generalization performance of the present algorithm over other existing similar algorithms.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10946399</pmid><doi>10.1016/S0893-6080(00)00029-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2000-05, Vol.13 (4), p.545-553 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_71776885 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Applied sciences Computer Simulation Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Generalization performance Least-Squares Analysis Linear Models Neural networks Neural Networks (Computer) Radial basis function neural network Real-time capability Recursive algorithm Regularized least squares Rival penalized competitive learning |
title | An efficient learning algorithm for improving generalization performance of radial basis function neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20learning%20algorithm%20for%20improving%20generalization%20performance%20of%20radial%20basis%20function%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=Wang,%20Zheng-ou&rft.date=2000-05-01&rft.volume=13&rft.issue=4&rft.spage=545&rft.epage=553&rft.pages=545-553&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(00)00029-0&rft_dat=%3Cproquest_cross%3E27515936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27515936&rft_id=info:pmid/10946399&rft_els_id=S0893608000000290&rfr_iscdi=true |