Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS)

Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2004-08, Vol.25 (18), p.4127-4134
Hauptverfasser: Gu, Y.W., Khor, K.A., Cheang, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4134
container_issue 18
container_start_page 4127
container_title Biomaterials
container_volume 25
creator Gu, Y.W.
Khor, K.A.
Cheang, P.
description Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24 h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.
doi_str_mv 10.1016/j.biomaterials.2003.11.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71775837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961203010949</els_id><sourcerecordid>71775837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e8dcd57493601bc4ef4a8ea97322d12ae665458f4b12e0e4a6de8ce02ac54dd3</originalsourceid><addsrcrecordid>eNqNkV9r1TAYh4Mo7jj9ChK8kHnRmjdN09Q7N_9MGChsl0JIk7eas7apSY_Yb78czhG92yCQBJ43vx95CHkFrAQG8u227HwYzYLRmyGVnLGqBChZxR6RDahGFXXL6sdkw0DwopXAT8izlLYs35ngT8kJ1EzIllUb8v08TFgM_hapmc3iF6SDWTHSPsQc4cNE8_q5uhj-rH-JOeJsIjrarTTl0y2dB5NGQ5Of9q2mH_Ts-tv1m-fkSZ8b4ovjfkpuPn28ubgsrr5-_nLx_qqwucVSoHLW1Y1oK8mgswJ7YRSatqk4d8ANSlmLWvWiA44MhZEOlUXGja2Fc9UpeX14do7h1w7TokefLA6DmTDskm6gaWpVNfeCXAGwtn0QyLgUcC8IjQLZwh58dwBtDClF7PUc_WjiqoHpvVW91f9b1XurGkBnq3n45TFl143o_o0eNWbgwwHA_Mu_PUadrMfJovMR7aJd8A_JuQPNHrrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17816911</pqid></control><display><type>article</type><title>Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS)</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gu, Y.W. ; Khor, K.A. ; Cheang, P.</creator><creatorcontrib>Gu, Y.W. ; Khor, K.A. ; Cheang, P.</creatorcontrib><description>Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24 h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2003.11.030</identifier><identifier>PMID: 15046903</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Apatites - chemistry ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Body Fluids - chemistry ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Calcium phosphate ; Chemical Precipitation ; Crystallization - methods ; Dissolution ; Durapatite - chemistry ; Gases - chemistry ; Hot Temperature ; Hydrogen-Ion Concentration ; Hydroxyapatite ; Materials Testing ; Molecular Conformation ; Precipitation ; Simulated body fluid ; Spark plasma sintering ; Surface Properties</subject><ispartof>Biomaterials, 2004-08, Vol.25 (18), p.4127-4134</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e8dcd57493601bc4ef4a8ea97322d12ae665458f4b12e0e4a6de8ce02ac54dd3</citedby><cites>FETCH-LOGICAL-c469t-e8dcd57493601bc4ef4a8ea97322d12ae665458f4b12e0e4a6de8ce02ac54dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2003.11.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15046903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Y.W.</creatorcontrib><creatorcontrib>Khor, K.A.</creatorcontrib><creatorcontrib>Cheang, P.</creatorcontrib><title>Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS)</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24 h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.</description><subject>Apatites - chemistry</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Body Fluids - chemistry</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Calcium phosphate</subject><subject>Chemical Precipitation</subject><subject>Crystallization - methods</subject><subject>Dissolution</subject><subject>Durapatite - chemistry</subject><subject>Gases - chemistry</subject><subject>Hot Temperature</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydroxyapatite</subject><subject>Materials Testing</subject><subject>Molecular Conformation</subject><subject>Precipitation</subject><subject>Simulated body fluid</subject><subject>Spark plasma sintering</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9r1TAYh4Mo7jj9ChK8kHnRmjdN09Q7N_9MGChsl0JIk7eas7apSY_Yb78czhG92yCQBJ43vx95CHkFrAQG8u227HwYzYLRmyGVnLGqBChZxR6RDahGFXXL6sdkw0DwopXAT8izlLYs35ngT8kJ1EzIllUb8v08TFgM_hapmc3iF6SDWTHSPsQc4cNE8_q5uhj-rH-JOeJsIjrarTTl0y2dB5NGQ5Of9q2mH_Ts-tv1m-fkSZ8b4ovjfkpuPn28ubgsrr5-_nLx_qqwucVSoHLW1Y1oK8mgswJ7YRSatqk4d8ANSlmLWvWiA44MhZEOlUXGja2Fc9UpeX14do7h1w7TokefLA6DmTDskm6gaWpVNfeCXAGwtn0QyLgUcC8IjQLZwh58dwBtDClF7PUc_WjiqoHpvVW91f9b1XurGkBnq3n45TFl143o_o0eNWbgwwHA_Mu_PUadrMfJovMR7aJd8A_JuQPNHrrc</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Gu, Y.W.</creator><creator>Khor, K.A.</creator><creator>Cheang, P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QQ</scope><scope>JG9</scope><scope>7SR</scope><scope>7TB</scope><scope>F28</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS)</title><author>Gu, Y.W. ; Khor, K.A. ; Cheang, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e8dcd57493601bc4ef4a8ea97322d12ae665458f4b12e0e4a6de8ce02ac54dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Apatites - chemistry</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Body Fluids - chemistry</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Calcium phosphate</topic><topic>Chemical Precipitation</topic><topic>Crystallization - methods</topic><topic>Dissolution</topic><topic>Durapatite - chemistry</topic><topic>Gases - chemistry</topic><topic>Hot Temperature</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydroxyapatite</topic><topic>Materials Testing</topic><topic>Molecular Conformation</topic><topic>Precipitation</topic><topic>Simulated body fluid</topic><topic>Spark plasma sintering</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Y.W.</creatorcontrib><creatorcontrib>Khor, K.A.</creatorcontrib><creatorcontrib>Cheang, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Y.W.</au><au>Khor, K.A.</au><au>Cheang, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS)</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>25</volume><issue>18</issue><spage>4127</spage><epage>4134</epage><pages>4127-4134</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Hydroxyapatite (HA) compacts with high density and superior mechanical properties were fabricated by spark plasma sintering (SPS) using spray-dried HA powders as feedstock. The formation of bone-like apatite layer on SPS consolidated HA compacts were investigated by soaking the HA compacts in simulated body fluid (SBF) for various periods (maximum of 28 days). The structural changes in HA post-SBF were analyzed with scanning electron microscopy, grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. It was found that a layer consisting microcrystalline carbonate-containing hydroxyapatite was formed on the surface of HA compacts after soaking for 24 h. The formation mechanism of apatite on the surface of HA compacts after soaking in SBF was attributed to the ion exchange between HA compacts and the SBF solution. The increase in ionic concentration of calcium and phosphorus as well as the increase in pH after SBF immersion resulted in an increase in ionic activity product of apatite in the solution, and provided a specific surface with a low interface energy that is conducive to the nucleation of apatite on the surface of HA compacts.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>15046903</pmid><doi>10.1016/j.biomaterials.2003.11.030</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2004-08, Vol.25 (18), p.4127-4134
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_71775837
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Apatites - chemistry
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Body Fluids - chemistry
Bone Substitutes - chemical synthesis
Bone Substitutes - chemistry
Calcium phosphate
Chemical Precipitation
Crystallization - methods
Dissolution
Durapatite - chemistry
Gases - chemistry
Hot Temperature
Hydrogen-Ion Concentration
Hydroxyapatite
Materials Testing
Molecular Conformation
Precipitation
Simulated body fluid
Spark plasma sintering
Surface Properties
title Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone-like%20apatite%20layer%20formation%20on%20hydroxyapatite%20prepared%20by%20spark%20plasma%20sintering%20(SPS)&rft.jtitle=Biomaterials&rft.au=Gu,%20Y.W.&rft.date=2004-08-01&rft.volume=25&rft.issue=18&rft.spage=4127&rft.epage=4134&rft.pages=4127-4134&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2003.11.030&rft_dat=%3Cproquest_cross%3E71775837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17816911&rft_id=info:pmid/15046903&rft_els_id=S0142961203010949&rfr_iscdi=true