Presynaptic K + channels: electrifying regulators of synaptic terminal excitability
Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K + channels is based on somatic recordings, there is good evidence that thes...
Gespeichert in:
Veröffentlicht in: | Trends in neurosciences (Regular ed.) 2004-04, Vol.27 (4), p.210-217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 4 |
container_start_page | 210 |
container_title | Trends in neurosciences (Regular ed.) |
container_volume | 27 |
creator | Dodson, Paul D. Forsythe, Ian D. |
description | Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K
+ channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K
+ channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K
+ channels at presynaptic terminals. |
doi_str_mv | 10.1016/j.tins.2004.02.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71766941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223604000700</els_id><sourcerecordid>817361461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</originalsourceid><addsrcrecordid>eNp9kU2LFDEURYM4OO3oH3AhhaAbqTJflcqIGxnUEQcUVHAXXlKvxjTpVE-SGux_b5puHHHh6m3OvVzOI-QJox2jTL1ad8XH3HFKZUd5Rxm_R1ZMD7plVP-4T1YVUi3nQp2ShzmvKWVSM_mAnLKeSqU1XZGvXxLmXYRt8a751Lxs3E-IEUN-3WBAV5Kfdj5eNwmvlwBlTrmZp-ZPomDa-AihwV_OF7A--LJ7RE4mCBkfH-8Z-f7-3beLy_bq84ePF2-vWtdzWVrbW4m2F3XwwISdLBPAHEfg51KIYRgABCCMI3NSCjpqh9aCslb1TnBnxRl5cejdpvlmwVzMxmeHIUDEeclmYINS55JV8Nk_4HpeUp2dDWe6IkLSCvED5NKcc8LJbJPfQNoZRs3et1mbvW-z920oN9V3DT09Ni92g-Nd5Ci4As-PAGQHYUoQnc9_cUpwofcT3xy4qh5vPSaTncfocPSpvsGMs__fjt9eb59g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218694340</pqid></control><display><type>article</type><title>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Dodson, Paul D. ; Forsythe, Ian D.</creator><creatorcontrib>Dodson, Paul D. ; Forsythe, Ian D.</creatorcontrib><description>Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K
+ channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K
+ channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K
+ channels at presynaptic terminals.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/j.tins.2004.02.012</identifier><identifier>PMID: 15046880</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Brain ; Cell membranes. Ionic channels. Membrane pores ; Cell structures and functions ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Humans ; Mammals ; Membrane Potentials - physiology ; Membranes ; Molecular and cellular biology ; Neurons ; Neurons - metabolism ; Potassium ; Potassium Channels - classification ; Potassium Channels - metabolism ; Presynaptic Terminals - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Trends in neurosciences (Regular ed.), 2004-04, Vol.27 (4), p.210-217</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</citedby><cites>FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tins.2004.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15632381$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15046880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dodson, Paul D.</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><title>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K
+ channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K
+ channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K
+ channels at presynaptic terminals.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Cell membranes. Ionic channels. Membrane pores</subject><subject>Cell structures and functions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Humans</subject><subject>Mammals</subject><subject>Membrane Potentials - physiology</subject><subject>Membranes</subject><subject>Molecular and cellular biology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Potassium</subject><subject>Potassium Channels - classification</subject><subject>Potassium Channels - metabolism</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEURYM4OO3oH3AhhaAbqTJflcqIGxnUEQcUVHAXXlKvxjTpVE-SGux_b5puHHHh6m3OvVzOI-QJox2jTL1ad8XH3HFKZUd5Rxm_R1ZMD7plVP-4T1YVUi3nQp2ShzmvKWVSM_mAnLKeSqU1XZGvXxLmXYRt8a751Lxs3E-IEUN-3WBAV5Kfdj5eNwmvlwBlTrmZp-ZPomDa-AihwV_OF7A--LJ7RE4mCBkfH-8Z-f7-3beLy_bq84ePF2-vWtdzWVrbW4m2F3XwwISdLBPAHEfg51KIYRgABCCMI3NSCjpqh9aCslb1TnBnxRl5cejdpvlmwVzMxmeHIUDEeclmYINS55JV8Nk_4HpeUp2dDWe6IkLSCvED5NKcc8LJbJPfQNoZRs3et1mbvW-z920oN9V3DT09Ni92g-Nd5Ci4As-PAGQHYUoQnc9_cUpwofcT3xy4qh5vPSaTncfocPSpvsGMs__fjt9eb59g</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Dodson, Paul D.</creator><creator>Forsythe, Ian D.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</title><author>Dodson, Paul D. ; Forsythe, Ian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Cell membranes. Ionic channels. Membrane pores</topic><topic>Cell structures and functions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Humans</topic><topic>Mammals</topic><topic>Membrane Potentials - physiology</topic><topic>Membranes</topic><topic>Molecular and cellular biology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Potassium</topic><topic>Potassium Channels - classification</topic><topic>Potassium Channels - metabolism</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodson, Paul D.</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodson, Paul D.</au><au>Forsythe, Ian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>27</volume><issue>4</issue><spage>210</spage><epage>217</epage><pages>210-217</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K
+ channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K
+ channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K
+ channels at presynaptic terminals.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15046880</pmid><doi>10.1016/j.tins.2004.02.012</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-2236 |
ispartof | Trends in neurosciences (Regular ed.), 2004-04, Vol.27 (4), p.210-217 |
issn | 0166-2236 1878-108X |
language | eng |
recordid | cdi_proquest_miscellaneous_71766941 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Biological and medical sciences Brain Cell membranes. Ionic channels. Membrane pores Cell structures and functions Fundamental and applied biological sciences. Psychology General aspects. Models. Methods Humans Mammals Membrane Potentials - physiology Membranes Molecular and cellular biology Neurons Neurons - metabolism Potassium Potassium Channels - classification Potassium Channels - metabolism Presynaptic Terminals - metabolism Vertebrates: nervous system and sense organs |
title | Presynaptic K + channels: electrifying regulators of synaptic terminal excitability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20K%20+%20channels:%20electrifying%20regulators%20of%20synaptic%20terminal%20excitability&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Dodson,%20Paul%20D.&rft.date=2004-04-01&rft.volume=27&rft.issue=4&rft.spage=210&rft.epage=217&rft.pages=210-217&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/j.tins.2004.02.012&rft_dat=%3Cproquest_cross%3E817361461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218694340&rft_id=info:pmid/15046880&rft_els_id=S0166223604000700&rfr_iscdi=true |