Presynaptic K + channels: electrifying regulators of synaptic terminal excitability

Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K + channels is based on somatic recordings, there is good evidence that thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in neurosciences (Regular ed.) 2004-04, Vol.27 (4), p.210-217
Hauptverfasser: Dodson, Paul D., Forsythe, Ian D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 4
container_start_page 210
container_title Trends in neurosciences (Regular ed.)
container_volume 27
creator Dodson, Paul D.
Forsythe, Ian D.
description Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K + channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K + channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K + channels at presynaptic terminals.
doi_str_mv 10.1016/j.tins.2004.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71766941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223604000700</els_id><sourcerecordid>817361461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</originalsourceid><addsrcrecordid>eNp9kU2LFDEURYM4OO3oH3AhhaAbqTJflcqIGxnUEQcUVHAXXlKvxjTpVE-SGux_b5puHHHh6m3OvVzOI-QJox2jTL1ad8XH3HFKZUd5Rxm_R1ZMD7plVP-4T1YVUi3nQp2ShzmvKWVSM_mAnLKeSqU1XZGvXxLmXYRt8a751Lxs3E-IEUN-3WBAV5Kfdj5eNwmvlwBlTrmZp-ZPomDa-AihwV_OF7A--LJ7RE4mCBkfH-8Z-f7-3beLy_bq84ePF2-vWtdzWVrbW4m2F3XwwISdLBPAHEfg51KIYRgABCCMI3NSCjpqh9aCslb1TnBnxRl5cejdpvlmwVzMxmeHIUDEeclmYINS55JV8Nk_4HpeUp2dDWe6IkLSCvED5NKcc8LJbJPfQNoZRs3et1mbvW-z920oN9V3DT09Ni92g-Nd5Ci4As-PAGQHYUoQnc9_cUpwofcT3xy4qh5vPSaTncfocPSpvsGMs__fjt9eb59g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218694340</pqid></control><display><type>article</type><title>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Dodson, Paul D. ; Forsythe, Ian D.</creator><creatorcontrib>Dodson, Paul D. ; Forsythe, Ian D.</creatorcontrib><description>Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K + channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K + channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K + channels at presynaptic terminals.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/j.tins.2004.02.012</identifier><identifier>PMID: 15046880</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Brain ; Cell membranes. Ionic channels. Membrane pores ; Cell structures and functions ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Humans ; Mammals ; Membrane Potentials - physiology ; Membranes ; Molecular and cellular biology ; Neurons ; Neurons - metabolism ; Potassium ; Potassium Channels - classification ; Potassium Channels - metabolism ; Presynaptic Terminals - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Trends in neurosciences (Regular ed.), 2004-04, Vol.27 (4), p.210-217</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</citedby><cites>FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tins.2004.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15632381$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15046880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dodson, Paul D.</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><title>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K + channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K + channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K + channels at presynaptic terminals.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Cell membranes. Ionic channels. Membrane pores</subject><subject>Cell structures and functions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Humans</subject><subject>Mammals</subject><subject>Membrane Potentials - physiology</subject><subject>Membranes</subject><subject>Molecular and cellular biology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Potassium</subject><subject>Potassium Channels - classification</subject><subject>Potassium Channels - metabolism</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEURYM4OO3oH3AhhaAbqTJflcqIGxnUEQcUVHAXXlKvxjTpVE-SGux_b5puHHHh6m3OvVzOI-QJox2jTL1ad8XH3HFKZUd5Rxm_R1ZMD7plVP-4T1YVUi3nQp2ShzmvKWVSM_mAnLKeSqU1XZGvXxLmXYRt8a751Lxs3E-IEUN-3WBAV5Kfdj5eNwmvlwBlTrmZp-ZPomDa-AihwV_OF7A--LJ7RE4mCBkfH-8Z-f7-3beLy_bq84ePF2-vWtdzWVrbW4m2F3XwwISdLBPAHEfg51KIYRgABCCMI3NSCjpqh9aCslb1TnBnxRl5cejdpvlmwVzMxmeHIUDEeclmYINS55JV8Nk_4HpeUp2dDWe6IkLSCvED5NKcc8LJbJPfQNoZRs3et1mbvW-z920oN9V3DT09Ni92g-Nd5Ci4As-PAGQHYUoQnc9_cUpwofcT3xy4qh5vPSaTncfocPSpvsGMs__fjt9eb59g</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Dodson, Paul D.</creator><creator>Forsythe, Ian D.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040401</creationdate><title>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</title><author>Dodson, Paul D. ; Forsythe, Ian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-b5b4eb53878713bfb13a1c2ea29433777aa3aeadd1c4430d8cebba6bb65c32cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Cell membranes. Ionic channels. Membrane pores</topic><topic>Cell structures and functions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Humans</topic><topic>Mammals</topic><topic>Membrane Potentials - physiology</topic><topic>Membranes</topic><topic>Molecular and cellular biology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Potassium</topic><topic>Potassium Channels - classification</topic><topic>Potassium Channels - metabolism</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodson, Paul D.</creatorcontrib><creatorcontrib>Forsythe, Ian D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodson, Paul D.</au><au>Forsythe, Ian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic K + channels: electrifying regulators of synaptic terminal excitability</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>27</volume><issue>4</issue><spage>210</spage><epage>217</epage><pages>210-217</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K + channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K + channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K + channels at presynaptic terminals.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15046880</pmid><doi>10.1016/j.tins.2004.02.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-2236
ispartof Trends in neurosciences (Regular ed.), 2004-04, Vol.27 (4), p.210-217
issn 0166-2236
1878-108X
language eng
recordid cdi_proquest_miscellaneous_71766941
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Biological and medical sciences
Brain
Cell membranes. Ionic channels. Membrane pores
Cell structures and functions
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Humans
Mammals
Membrane Potentials - physiology
Membranes
Molecular and cellular biology
Neurons
Neurons - metabolism
Potassium
Potassium Channels - classification
Potassium Channels - metabolism
Presynaptic Terminals - metabolism
Vertebrates: nervous system and sense organs
title Presynaptic K + channels: electrifying regulators of synaptic terminal excitability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20K%20+%20channels:%20electrifying%20regulators%20of%20synaptic%20terminal%20excitability&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Dodson,%20Paul%20D.&rft.date=2004-04-01&rft.volume=27&rft.issue=4&rft.spage=210&rft.epage=217&rft.pages=210-217&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/j.tins.2004.02.012&rft_dat=%3Cproquest_cross%3E817361461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218694340&rft_id=info:pmid/15046880&rft_els_id=S0166223604000700&rfr_iscdi=true