ClC‐3B, a novel ClC‐3 splicing variant that interacts with EBP50 and facilitates expression of CFTR‐regulated ORCC
ABSTRACT We have cloned ClC‐3B, a novel alternative splicing variant of ClC‐3 (ClC‐3A) that is expressed predominantly in epithelial cells. ClC‐3B has a different, slightly longer C‐terminal end than ClC‐3A and contains a consensus motif for binding to the second PDZ (PSD95/Dlg/ZO‐1) domain of the e...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 2002-06, Vol.16 (8), p.863-865 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 865 |
---|---|
container_issue | 8 |
container_start_page | 863 |
container_title | The FASEB journal |
container_volume | 16 |
creator | Ogura, Takehiko Furukawa, Tetsushi Toyozaki, Tetsuya Yamada, Katsuya Zheng, Ya‐Juan Katayama, Yoshifumi Nakaya, Haruaki Inagaki, Nobuya |
description | ABSTRACT
We have cloned ClC‐3B, a novel alternative splicing variant of ClC‐3 (ClC‐3A) that is expressed predominantly in epithelial cells. ClC‐3B has a different, slightly longer C‐terminal end than ClC‐3A and contains a consensus motif for binding to the second PDZ (PSD95/Dlg/ZO‐1) domain of the epithelium‐specific scaffolding protein EBP50. Both in vitro and in vivo binding assays demonstrate interaction between ClC‐3B and EBP50. C127 mouse mammary epithelial cells transfected with ClC‐3B alone showed diffuse immunoreactivity for ClC‐3B in the cytoplasmic region. In contrast, when EBP50 was cotransfected with ClC‐3B, strong immunoreactivity for ClC‐3B appeared at the leading edges of membrane ruffles. Patch‐clamp experiments revealed that cotransfection of ClC‐3B and EBP50 resulted in a remarkable increase in outwardly rectifying Cl– channel (ORCC) activities at the leading edges of membrane ruffles in C127 cells. The electrophysiological properties of the ClC‐3B‐induced ORCCs are similar to those of ORCCs described in native epithelial cells. When cystic fibrosis transmembrane conductance regulator (CFTR) was cotransfected with ClC‐3B and EBP50, ClC‐3B‐dependent ORCCs were activated via the protein kinase A‐dependent pathway. These findings indicate that ClC‐3B is itself a CFTR‐regulated ORCC molecule or its activator. |
doi_str_mv | 10.1096/fj.01-0845fje |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71764290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71764290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371E-adf98d867114caec0fa989511cd83ef45858255a7912a63bf315a39a08f401003</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi1ERYfCki3yilVTfO3Ysdkx0QSoKrUqZW25jt165EkG29OfHY_QZ-RJCJpI7Ojq6t57dKRPH0LvgJwAUeKjX58QqIisuV-7F2gBnJFKSEFeogWRilZCMHmIXue8JoQAAfEKHQIo0VCqFuihje3vX09seYwNHsY7F_F8wXkbgw3DDb4zKZih4HJrCg5DccnYkvF9KLd4tbzgBJuhx97YEEMxxWXsHrbJ5RzGAY8et93V5WRM7mYXp3ePzy_b9g068CZm93aeR-hHt7pqv1Zn51--tZ_PKssaWFWm90r2UjQAtTXOEm-UVBzA9pI5X3PJJeXcNAqoEezaM-CGKUOkr6e0hB2hD3vvNo0_dy4XvQnZuhjN4MZd1g00oqbqeZASyQQFNoHVHrRpzDk5r7cpbEx61ED03060X2sCeu5k4t_P4t31xvX_6LmECfi0B-5DdI__t-nu-5J2p1O0ae9OV-wPj5Wa3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20836213</pqid></control><display><type>article</type><title>ClC‐3B, a novel ClC‐3 splicing variant that interacts with EBP50 and facilitates expression of CFTR‐regulated ORCC</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Ogura, Takehiko ; Furukawa, Tetsushi ; Toyozaki, Tetsuya ; Yamada, Katsuya ; Zheng, Ya‐Juan ; Katayama, Yoshifumi ; Nakaya, Haruaki ; Inagaki, Nobuya</creator><creatorcontrib>Ogura, Takehiko ; Furukawa, Tetsushi ; Toyozaki, Tetsuya ; Yamada, Katsuya ; Zheng, Ya‐Juan ; Katayama, Yoshifumi ; Nakaya, Haruaki ; Inagaki, Nobuya</creatorcontrib><description>ABSTRACT
We have cloned ClC‐3B, a novel alternative splicing variant of ClC‐3 (ClC‐3A) that is expressed predominantly in epithelial cells. ClC‐3B has a different, slightly longer C‐terminal end than ClC‐3A and contains a consensus motif for binding to the second PDZ (PSD95/Dlg/ZO‐1) domain of the epithelium‐specific scaffolding protein EBP50. Both in vitro and in vivo binding assays demonstrate interaction between ClC‐3B and EBP50. C127 mouse mammary epithelial cells transfected with ClC‐3B alone showed diffuse immunoreactivity for ClC‐3B in the cytoplasmic region. In contrast, when EBP50 was cotransfected with ClC‐3B, strong immunoreactivity for ClC‐3B appeared at the leading edges of membrane ruffles. Patch‐clamp experiments revealed that cotransfection of ClC‐3B and EBP50 resulted in a remarkable increase in outwardly rectifying Cl– channel (ORCC) activities at the leading edges of membrane ruffles in C127 cells. The electrophysiological properties of the ClC‐3B‐induced ORCCs are similar to those of ORCCs described in native epithelial cells. When cystic fibrosis transmembrane conductance regulator (CFTR) was cotransfected with ClC‐3B and EBP50, ClC‐3B‐dependent ORCCs were activated via the protein kinase A‐dependent pathway. These findings indicate that ClC‐3B is itself a CFTR‐regulated ORCC molecule or its activator.</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.01-0845fje</identifier><identifier>PMID: 11967229</identifier><language>eng</language><publisher>United States</publisher><subject>1-Methyl-3-isobutylxanthine - pharmacology ; 3T3 Cells ; Alternative Splicing ; Animals ; Calcimycin - pharmacology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line ; chloride channel ; Chloride Channels - genetics ; Chloride Channels - metabolism ; CHO Cells ; Colforsin - pharmacology ; Cricetinae ; cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; epithelium ; Gene Expression ; Humans ; Ionophores - pharmacology ; Membrane Potentials - drug effects ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; PDZ domain ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Protein Binding ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Sodium-Hydrogen Exchangers ; Transfection</subject><ispartof>The FASEB journal, 2002-06, Vol.16 (8), p.863-865</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371E-adf98d867114caec0fa989511cd83ef45858255a7912a63bf315a39a08f401003</citedby><cites>FETCH-LOGICAL-c371E-adf98d867114caec0fa989511cd83ef45858255a7912a63bf315a39a08f401003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.01-0845fje$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.01-0845fje$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11967229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogura, Takehiko</creatorcontrib><creatorcontrib>Furukawa, Tetsushi</creatorcontrib><creatorcontrib>Toyozaki, Tetsuya</creatorcontrib><creatorcontrib>Yamada, Katsuya</creatorcontrib><creatorcontrib>Zheng, Ya‐Juan</creatorcontrib><creatorcontrib>Katayama, Yoshifumi</creatorcontrib><creatorcontrib>Nakaya, Haruaki</creatorcontrib><creatorcontrib>Inagaki, Nobuya</creatorcontrib><title>ClC‐3B, a novel ClC‐3 splicing variant that interacts with EBP50 and facilitates expression of CFTR‐regulated ORCC</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT
We have cloned ClC‐3B, a novel alternative splicing variant of ClC‐3 (ClC‐3A) that is expressed predominantly in epithelial cells. ClC‐3B has a different, slightly longer C‐terminal end than ClC‐3A and contains a consensus motif for binding to the second PDZ (PSD95/Dlg/ZO‐1) domain of the epithelium‐specific scaffolding protein EBP50. Both in vitro and in vivo binding assays demonstrate interaction between ClC‐3B and EBP50. C127 mouse mammary epithelial cells transfected with ClC‐3B alone showed diffuse immunoreactivity for ClC‐3B in the cytoplasmic region. In contrast, when EBP50 was cotransfected with ClC‐3B, strong immunoreactivity for ClC‐3B appeared at the leading edges of membrane ruffles. Patch‐clamp experiments revealed that cotransfection of ClC‐3B and EBP50 resulted in a remarkable increase in outwardly rectifying Cl– channel (ORCC) activities at the leading edges of membrane ruffles in C127 cells. The electrophysiological properties of the ClC‐3B‐induced ORCCs are similar to those of ORCCs described in native epithelial cells. When cystic fibrosis transmembrane conductance regulator (CFTR) was cotransfected with ClC‐3B and EBP50, ClC‐3B‐dependent ORCCs were activated via the protein kinase A‐dependent pathway. These findings indicate that ClC‐3B is itself a CFTR‐regulated ORCC molecule or its activator.</description><subject>1-Methyl-3-isobutylxanthine - pharmacology</subject><subject>3T3 Cells</subject><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Calcimycin - pharmacology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line</subject><subject>chloride channel</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>CHO Cells</subject><subject>Colforsin - pharmacology</subject><subject>Cricetinae</subject><subject>cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>epithelium</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Ionophores - pharmacology</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>PDZ domain</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Protein Binding</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Sodium-Hydrogen Exchangers</subject><subject>Transfection</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURi1ERYfCki3yilVTfO3Ysdkx0QSoKrUqZW25jt165EkG29OfHY_QZ-RJCJpI7Ojq6t57dKRPH0LvgJwAUeKjX58QqIisuV-7F2gBnJFKSEFeogWRilZCMHmIXue8JoQAAfEKHQIo0VCqFuihje3vX09seYwNHsY7F_F8wXkbgw3DDb4zKZih4HJrCg5DccnYkvF9KLd4tbzgBJuhx97YEEMxxWXsHrbJ5RzGAY8et93V5WRM7mYXp3ePzy_b9g068CZm93aeR-hHt7pqv1Zn51--tZ_PKssaWFWm90r2UjQAtTXOEm-UVBzA9pI5X3PJJeXcNAqoEezaM-CGKUOkr6e0hB2hD3vvNo0_dy4XvQnZuhjN4MZd1g00oqbqeZASyQQFNoHVHrRpzDk5r7cpbEx61ED03060X2sCeu5k4t_P4t31xvX_6LmECfi0B-5DdI__t-nu-5J2p1O0ae9OV-wPj5Wa3w</recordid><startdate>200206</startdate><enddate>200206</enddate><creator>Ogura, Takehiko</creator><creator>Furukawa, Tetsushi</creator><creator>Toyozaki, Tetsuya</creator><creator>Yamada, Katsuya</creator><creator>Zheng, Ya‐Juan</creator><creator>Katayama, Yoshifumi</creator><creator>Nakaya, Haruaki</creator><creator>Inagaki, Nobuya</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200206</creationdate><title>ClC‐3B, a novel ClC‐3 splicing variant that interacts with EBP50 and facilitates expression of CFTR‐regulated ORCC</title><author>Ogura, Takehiko ; Furukawa, Tetsushi ; Toyozaki, Tetsuya ; Yamada, Katsuya ; Zheng, Ya‐Juan ; Katayama, Yoshifumi ; Nakaya, Haruaki ; Inagaki, Nobuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371E-adf98d867114caec0fa989511cd83ef45858255a7912a63bf315a39a08f401003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>1-Methyl-3-isobutylxanthine - pharmacology</topic><topic>3T3 Cells</topic><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Calcimycin - pharmacology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line</topic><topic>chloride channel</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>CHO Cells</topic><topic>Colforsin - pharmacology</topic><topic>Cricetinae</topic><topic>cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>epithelium</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Ionophores - pharmacology</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>PDZ domain</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Protein Binding</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Sodium-Hydrogen Exchangers</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogura, Takehiko</creatorcontrib><creatorcontrib>Furukawa, Tetsushi</creatorcontrib><creatorcontrib>Toyozaki, Tetsuya</creatorcontrib><creatorcontrib>Yamada, Katsuya</creatorcontrib><creatorcontrib>Zheng, Ya‐Juan</creatorcontrib><creatorcontrib>Katayama, Yoshifumi</creatorcontrib><creatorcontrib>Nakaya, Haruaki</creatorcontrib><creatorcontrib>Inagaki, Nobuya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogura, Takehiko</au><au>Furukawa, Tetsushi</au><au>Toyozaki, Tetsuya</au><au>Yamada, Katsuya</au><au>Zheng, Ya‐Juan</au><au>Katayama, Yoshifumi</au><au>Nakaya, Haruaki</au><au>Inagaki, Nobuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ClC‐3B, a novel ClC‐3 splicing variant that interacts with EBP50 and facilitates expression of CFTR‐regulated ORCC</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2002-06</date><risdate>2002</risdate><volume>16</volume><issue>8</issue><spage>863</spage><epage>865</epage><pages>863-865</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT
We have cloned ClC‐3B, a novel alternative splicing variant of ClC‐3 (ClC‐3A) that is expressed predominantly in epithelial cells. ClC‐3B has a different, slightly longer C‐terminal end than ClC‐3A and contains a consensus motif for binding to the second PDZ (PSD95/Dlg/ZO‐1) domain of the epithelium‐specific scaffolding protein EBP50. Both in vitro and in vivo binding assays demonstrate interaction between ClC‐3B and EBP50. C127 mouse mammary epithelial cells transfected with ClC‐3B alone showed diffuse immunoreactivity for ClC‐3B in the cytoplasmic region. In contrast, when EBP50 was cotransfected with ClC‐3B, strong immunoreactivity for ClC‐3B appeared at the leading edges of membrane ruffles. Patch‐clamp experiments revealed that cotransfection of ClC‐3B and EBP50 resulted in a remarkable increase in outwardly rectifying Cl– channel (ORCC) activities at the leading edges of membrane ruffles in C127 cells. The electrophysiological properties of the ClC‐3B‐induced ORCCs are similar to those of ORCCs described in native epithelial cells. When cystic fibrosis transmembrane conductance regulator (CFTR) was cotransfected with ClC‐3B and EBP50, ClC‐3B‐dependent ORCCs were activated via the protein kinase A‐dependent pathway. These findings indicate that ClC‐3B is itself a CFTR‐regulated ORCC molecule or its activator.</abstract><cop>United States</cop><pmid>11967229</pmid><doi>10.1096/fj.01-0845fje</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2002-06, Vol.16 (8), p.863-865 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_71764290 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | 1-Methyl-3-isobutylxanthine - pharmacology 3T3 Cells Alternative Splicing Animals Calcimycin - pharmacology Carrier Proteins - genetics Carrier Proteins - metabolism Cell Line chloride channel Chloride Channels - genetics Chloride Channels - metabolism CHO Cells Colforsin - pharmacology Cricetinae cystic fibrosis Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - metabolism epithelium Gene Expression Humans Ionophores - pharmacology Membrane Potentials - drug effects Membrane Proteins - genetics Membrane Proteins - metabolism Mice PDZ domain Phosphoproteins - genetics Phosphoproteins - metabolism Protein Binding Protein Isoforms - genetics Protein Isoforms - metabolism Sodium-Hydrogen Exchangers Transfection |
title | ClC‐3B, a novel ClC‐3 splicing variant that interacts with EBP50 and facilitates expression of CFTR‐regulated ORCC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ClC%E2%80%903B,%20a%20novel%20ClC%E2%80%903%20splicing%20variant%20that%20interacts%20with%20EBP50%20and%20facilitates%20expression%20of%20CFTR%E2%80%90regulated%20ORCC&rft.jtitle=The%20FASEB%20journal&rft.au=Ogura,%20Takehiko&rft.date=2002-06&rft.volume=16&rft.issue=8&rft.spage=863&rft.epage=865&rft.pages=863-865&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.01-0845fje&rft_dat=%3Cproquest_cross%3E71764290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20836213&rft_id=info:pmid/11967229&rfr_iscdi=true |