Chromatic edges, surfaces and constancies in cerebral achromatopsia

We tested achromatopsic observer, MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that MS is able to discriminate the magnitude of chromatic and l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychologia 2004, Vol.42 (6), p.821-830
Hauptverfasser: Kentridge, R.W, Heywood, C.A, Cowey, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 6
container_start_page 821
container_title Neuropsychologia
container_volume 42
creator Kentridge, R.W
Heywood, C.A
Cowey, A
description We tested achromatopsic observer, MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover, MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of MS do not, remaining dominated by local contrast signals. We conclude that MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience.
doi_str_mv 10.1016/j.neuropsychologia.2003.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71750968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002839320300280X</els_id><sourcerecordid>71750968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e1953f863f39f1a95e3ef279e394223e90c5a89f39632c614d0b58de039571d93</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMoun78BelFT7bONE3bXARZ_ALBi55DNp1qlm6zJq2w_94sXVA8eRoyeWbm5WHsEiFDwPJ6mfU0ercOG_PhOvdudZYD8AwxA8j32AzriqdcYLHPZrFTp1zy_Igdh7AEgELk9SE7QgG8ghJmbD7_8G6lB2sSat4pXCVh9K02FBLdN4lxfRh0b2x82z4x5GnhdZdoM43FIFafsoNWd4HOdvWEvd3fvc4f0-eXh6f57XNqCqyHlFAK3tYlb7lsUUtBnNq8ksRlkeecJBihaxl_S56bEosGFqJuCLgUFTaSn7DLae_au8-RwqBWNhjqOt2TG4OqsBIgyzqCNxNovAvBU6vW3q603ygEtdWoluqvRrXVqBBVlBYXnO8ujYsVNT_jO28RuNgBOhjdtX7rKPzihOBTkseJo-jly5JXIbrsDTXWkxlU4-x_M30Dwhma4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71750968</pqid></control><display><type>article</type><title>Chromatic edges, surfaces and constancies in cerebral achromatopsia</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kentridge, R.W ; Heywood, C.A ; Cowey, A</creator><creatorcontrib>Kentridge, R.W ; Heywood, C.A ; Cowey, A</creatorcontrib><description>We tested achromatopsic observer, MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover, MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of MS do not, remaining dominated by local contrast signals. We conclude that MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience.</description><identifier>ISSN: 0028-3932</identifier><identifier>EISSN: 1873-3514</identifier><identifier>DOI: 10.1016/j.neuropsychologia.2003.11.002</identifier><identifier>PMID: 15037060</identifier><identifier>CODEN: NUPSA6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Adult and adolescent clinical studies ; Biological and medical sciences ; Brain Diseases - physiopathology ; Color Perception - physiology ; Color Perception Tests ; Color Vision Defects - physiopathology ; Colour ; Colour constancy ; Contrast Sensitivity - physiology ; Cortical colour blindness ; Discrimination Learning - physiology ; Form Perception - physiology ; Humans ; Male ; Medical sciences ; Organic mental disorders. Neuropsychology ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Vision ; Visual Cortex - physiology ; Visual Cortex - physiopathology</subject><ispartof>Neuropsychologia, 2004, Vol.42 (6), p.821-830</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e1953f863f39f1a95e3ef279e394223e90c5a89f39632c614d0b58de039571d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuropsychologia.2003.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15553968$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15037060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kentridge, R.W</creatorcontrib><creatorcontrib>Heywood, C.A</creatorcontrib><creatorcontrib>Cowey, A</creatorcontrib><title>Chromatic edges, surfaces and constancies in cerebral achromatopsia</title><title>Neuropsychologia</title><addtitle>Neuropsychologia</addtitle><description>We tested achromatopsic observer, MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover, MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of MS do not, remaining dominated by local contrast signals. We conclude that MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience.</description><subject>Adult</subject><subject>Adult and adolescent clinical studies</subject><subject>Biological and medical sciences</subject><subject>Brain Diseases - physiopathology</subject><subject>Color Perception - physiology</subject><subject>Color Perception Tests</subject><subject>Color Vision Defects - physiopathology</subject><subject>Colour</subject><subject>Colour constancy</subject><subject>Contrast Sensitivity - physiology</subject><subject>Cortical colour blindness</subject><subject>Discrimination Learning - physiology</subject><subject>Form Perception - physiology</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Organic mental disorders. Neuropsychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Vision</subject><subject>Visual Cortex - physiology</subject><subject>Visual Cortex - physiopathology</subject><issn>0028-3932</issn><issn>1873-3514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAQhoMoun78BelFT7bONE3bXARZ_ALBi55DNp1qlm6zJq2w_94sXVA8eRoyeWbm5WHsEiFDwPJ6mfU0ercOG_PhOvdudZYD8AwxA8j32AzriqdcYLHPZrFTp1zy_Igdh7AEgELk9SE7QgG8ghJmbD7_8G6lB2sSat4pXCVh9K02FBLdN4lxfRh0b2x82z4x5GnhdZdoM43FIFafsoNWd4HOdvWEvd3fvc4f0-eXh6f57XNqCqyHlFAK3tYlb7lsUUtBnNq8ksRlkeecJBihaxl_S56bEosGFqJuCLgUFTaSn7DLae_au8-RwqBWNhjqOt2TG4OqsBIgyzqCNxNovAvBU6vW3q603ygEtdWoluqvRrXVqBBVlBYXnO8ujYsVNT_jO28RuNgBOhjdtX7rKPzihOBTkseJo-jly5JXIbrsDTXWkxlU4-x_M30Dwhma4g</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kentridge, R.W</creator><creator>Heywood, C.A</creator><creator>Cowey, A</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Chromatic edges, surfaces and constancies in cerebral achromatopsia</title><author>Kentridge, R.W ; Heywood, C.A ; Cowey, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e1953f863f39f1a95e3ef279e394223e90c5a89f39632c614d0b58de039571d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Adult and adolescent clinical studies</topic><topic>Biological and medical sciences</topic><topic>Brain Diseases - physiopathology</topic><topic>Color Perception - physiology</topic><topic>Color Perception Tests</topic><topic>Color Vision Defects - physiopathology</topic><topic>Colour</topic><topic>Colour constancy</topic><topic>Contrast Sensitivity - physiology</topic><topic>Cortical colour blindness</topic><topic>Discrimination Learning - physiology</topic><topic>Form Perception - physiology</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Organic mental disorders. Neuropsychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Vision</topic><topic>Visual Cortex - physiology</topic><topic>Visual Cortex - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kentridge, R.W</creatorcontrib><creatorcontrib>Heywood, C.A</creatorcontrib><creatorcontrib>Cowey, A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuropsychologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kentridge, R.W</au><au>Heywood, C.A</au><au>Cowey, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatic edges, surfaces and constancies in cerebral achromatopsia</atitle><jtitle>Neuropsychologia</jtitle><addtitle>Neuropsychologia</addtitle><date>2004</date><risdate>2004</risdate><volume>42</volume><issue>6</issue><spage>821</spage><epage>830</epage><pages>821-830</pages><issn>0028-3932</issn><eissn>1873-3514</eissn><coden>NUPSA6</coden><abstract>We tested achromatopsic observer, MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover, MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of MS do not, remaining dominated by local contrast signals. We conclude that MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15037060</pmid><doi>10.1016/j.neuropsychologia.2003.11.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3932
ispartof Neuropsychologia, 2004, Vol.42 (6), p.821-830
issn 0028-3932
1873-3514
language eng
recordid cdi_proquest_miscellaneous_71750968
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adult
Adult and adolescent clinical studies
Biological and medical sciences
Brain Diseases - physiopathology
Color Perception - physiology
Color Perception Tests
Color Vision Defects - physiopathology
Colour
Colour constancy
Contrast Sensitivity - physiology
Cortical colour blindness
Discrimination Learning - physiology
Form Perception - physiology
Humans
Male
Medical sciences
Organic mental disorders. Neuropsychology
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Vision
Visual Cortex - physiology
Visual Cortex - physiopathology
title Chromatic edges, surfaces and constancies in cerebral achromatopsia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatic%20edges,%20surfaces%20and%20constancies%20in%20cerebral%20achromatopsia&rft.jtitle=Neuropsychologia&rft.au=Kentridge,%20R.W&rft.date=2004&rft.volume=42&rft.issue=6&rft.spage=821&rft.epage=830&rft.pages=821-830&rft.issn=0028-3932&rft.eissn=1873-3514&rft.coden=NUPSA6&rft_id=info:doi/10.1016/j.neuropsychologia.2003.11.002&rft_dat=%3Cproquest_cross%3E71750968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71750968&rft_id=info:pmid/15037060&rft_els_id=S002839320300280X&rfr_iscdi=true