Chromatic edges, surfaces and constancies in cerebral achromatopsia
We tested achromatopsic observer, MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that MS is able to discriminate the magnitude of chromatic and l...
Gespeichert in:
Veröffentlicht in: | Neuropsychologia 2004, Vol.42 (6), p.821-830 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 6 |
container_start_page | 821 |
container_title | Neuropsychologia |
container_volume | 42 |
creator | Kentridge, R.W Heywood, C.A Cowey, A |
description | We tested achromatopsic observer,
MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that
MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover,
MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both
MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of
MS do not, remaining dominated by local contrast signals. We conclude that
MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience. |
doi_str_mv | 10.1016/j.neuropsychologia.2003.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71750968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002839320300280X</els_id><sourcerecordid>71750968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e1953f863f39f1a95e3ef279e394223e90c5a89f39632c614d0b58de039571d93</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMoun78BelFT7bONE3bXARZ_ALBi55DNp1qlm6zJq2w_94sXVA8eRoyeWbm5WHsEiFDwPJ6mfU0ercOG_PhOvdudZYD8AwxA8j32AzriqdcYLHPZrFTp1zy_Igdh7AEgELk9SE7QgG8ghJmbD7_8G6lB2sSat4pXCVh9K02FBLdN4lxfRh0b2x82z4x5GnhdZdoM43FIFafsoNWd4HOdvWEvd3fvc4f0-eXh6f57XNqCqyHlFAK3tYlb7lsUUtBnNq8ksRlkeecJBihaxl_S56bEosGFqJuCLgUFTaSn7DLae_au8-RwqBWNhjqOt2TG4OqsBIgyzqCNxNovAvBU6vW3q603ygEtdWoluqvRrXVqBBVlBYXnO8ujYsVNT_jO28RuNgBOhjdtX7rKPzihOBTkseJo-jly5JXIbrsDTXWkxlU4-x_M30Dwhma4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71750968</pqid></control><display><type>article</type><title>Chromatic edges, surfaces and constancies in cerebral achromatopsia</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kentridge, R.W ; Heywood, C.A ; Cowey, A</creator><creatorcontrib>Kentridge, R.W ; Heywood, C.A ; Cowey, A</creatorcontrib><description>We tested achromatopsic observer,
MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that
MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover,
MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both
MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of
MS do not, remaining dominated by local contrast signals. We conclude that
MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience.</description><identifier>ISSN: 0028-3932</identifier><identifier>EISSN: 1873-3514</identifier><identifier>DOI: 10.1016/j.neuropsychologia.2003.11.002</identifier><identifier>PMID: 15037060</identifier><identifier>CODEN: NUPSA6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Adult and adolescent clinical studies ; Biological and medical sciences ; Brain Diseases - physiopathology ; Color Perception - physiology ; Color Perception Tests ; Color Vision Defects - physiopathology ; Colour ; Colour constancy ; Contrast Sensitivity - physiology ; Cortical colour blindness ; Discrimination Learning - physiology ; Form Perception - physiology ; Humans ; Male ; Medical sciences ; Organic mental disorders. Neuropsychology ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Vision ; Visual Cortex - physiology ; Visual Cortex - physiopathology</subject><ispartof>Neuropsychologia, 2004, Vol.42 (6), p.821-830</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e1953f863f39f1a95e3ef279e394223e90c5a89f39632c614d0b58de039571d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuropsychologia.2003.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15553968$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15037060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kentridge, R.W</creatorcontrib><creatorcontrib>Heywood, C.A</creatorcontrib><creatorcontrib>Cowey, A</creatorcontrib><title>Chromatic edges, surfaces and constancies in cerebral achromatopsia</title><title>Neuropsychologia</title><addtitle>Neuropsychologia</addtitle><description>We tested achromatopsic observer,
MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that
MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover,
MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both
MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of
MS do not, remaining dominated by local contrast signals. We conclude that
MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience.</description><subject>Adult</subject><subject>Adult and adolescent clinical studies</subject><subject>Biological and medical sciences</subject><subject>Brain Diseases - physiopathology</subject><subject>Color Perception - physiology</subject><subject>Color Perception Tests</subject><subject>Color Vision Defects - physiopathology</subject><subject>Colour</subject><subject>Colour constancy</subject><subject>Contrast Sensitivity - physiology</subject><subject>Cortical colour blindness</subject><subject>Discrimination Learning - physiology</subject><subject>Form Perception - physiology</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Organic mental disorders. Neuropsychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Vision</subject><subject>Visual Cortex - physiology</subject><subject>Visual Cortex - physiopathology</subject><issn>0028-3932</issn><issn>1873-3514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAQhoMoun78BelFT7bONE3bXARZ_ALBi55DNp1qlm6zJq2w_94sXVA8eRoyeWbm5WHsEiFDwPJ6mfU0ercOG_PhOvdudZYD8AwxA8j32AzriqdcYLHPZrFTp1zy_Igdh7AEgELk9SE7QgG8ghJmbD7_8G6lB2sSat4pXCVh9K02FBLdN4lxfRh0b2x82z4x5GnhdZdoM43FIFafsoNWd4HOdvWEvd3fvc4f0-eXh6f57XNqCqyHlFAK3tYlb7lsUUtBnNq8ksRlkeecJBihaxl_S56bEosGFqJuCLgUFTaSn7DLae_au8-RwqBWNhjqOt2TG4OqsBIgyzqCNxNovAvBU6vW3q603ygEtdWoluqvRrXVqBBVlBYXnO8ujYsVNT_jO28RuNgBOhjdtX7rKPzihOBTkseJo-jly5JXIbrsDTXWkxlU4-x_M30Dwhma4g</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kentridge, R.W</creator><creator>Heywood, C.A</creator><creator>Cowey, A</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Chromatic edges, surfaces and constancies in cerebral achromatopsia</title><author>Kentridge, R.W ; Heywood, C.A ; Cowey, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e1953f863f39f1a95e3ef279e394223e90c5a89f39632c614d0b58de039571d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Adult and adolescent clinical studies</topic><topic>Biological and medical sciences</topic><topic>Brain Diseases - physiopathology</topic><topic>Color Perception - physiology</topic><topic>Color Perception Tests</topic><topic>Color Vision Defects - physiopathology</topic><topic>Colour</topic><topic>Colour constancy</topic><topic>Contrast Sensitivity - physiology</topic><topic>Cortical colour blindness</topic><topic>Discrimination Learning - physiology</topic><topic>Form Perception - physiology</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Organic mental disorders. Neuropsychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Vision</topic><topic>Visual Cortex - physiology</topic><topic>Visual Cortex - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kentridge, R.W</creatorcontrib><creatorcontrib>Heywood, C.A</creatorcontrib><creatorcontrib>Cowey, A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuropsychologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kentridge, R.W</au><au>Heywood, C.A</au><au>Cowey, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatic edges, surfaces and constancies in cerebral achromatopsia</atitle><jtitle>Neuropsychologia</jtitle><addtitle>Neuropsychologia</addtitle><date>2004</date><risdate>2004</risdate><volume>42</volume><issue>6</issue><spage>821</spage><epage>830</epage><pages>821-830</pages><issn>0028-3932</issn><eissn>1873-3514</eissn><coden>NUPSA6</coden><abstract>We tested achromatopsic observer,
MS, on a number of tasks to establish the extent to which he can process chromatic contour. Stimuli, specified in terms of cone-contrast, were presented in a three-choice oddity paradigm. First we show that
MS is able to discriminate the magnitude of chromatic and luminance contrast, but performance is inferior to that of normal observers. Moreover,
MS can discriminate isoluminant borders of different chromatic composition. These abilities are not the result of unintended luminance differences and are abolished when chromatic borders are masked by sharp luminance change. In simple displays, local cone-contrast signals can make a significant contribution to surface colour appearance in normal observers. In more complex displays, the perception of a surface’s colour becomes largely independent of the local contrast to its background, via processes presumed to be similar to the edge integration and anchoring stages of Land’s Retinex algorithm. We show that in simple displays the percepts of both
MS and normal observers are dominated by local chromatic-contrast. But, although the percepts of normal observers change in line with the predictions of retinex theory in more complex displays, those of
MS do not, remaining dominated by local contrast signals. We conclude that
MS has lost the ability to perform edge integration and that this loss is closely related to his absence of colour experience.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15037060</pmid><doi>10.1016/j.neuropsychologia.2003.11.002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3932 |
ispartof | Neuropsychologia, 2004, Vol.42 (6), p.821-830 |
issn | 0028-3932 1873-3514 |
language | eng |
recordid | cdi_proquest_miscellaneous_71750968 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adult Adult and adolescent clinical studies Biological and medical sciences Brain Diseases - physiopathology Color Perception - physiology Color Perception Tests Color Vision Defects - physiopathology Colour Colour constancy Contrast Sensitivity - physiology Cortical colour blindness Discrimination Learning - physiology Form Perception - physiology Humans Male Medical sciences Organic mental disorders. Neuropsychology Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Vision Visual Cortex - physiology Visual Cortex - physiopathology |
title | Chromatic edges, surfaces and constancies in cerebral achromatopsia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatic%20edges,%20surfaces%20and%20constancies%20in%20cerebral%20achromatopsia&rft.jtitle=Neuropsychologia&rft.au=Kentridge,%20R.W&rft.date=2004&rft.volume=42&rft.issue=6&rft.spage=821&rft.epage=830&rft.pages=821-830&rft.issn=0028-3932&rft.eissn=1873-3514&rft.coden=NUPSA6&rft_id=info:doi/10.1016/j.neuropsychologia.2003.11.002&rft_dat=%3Cproquest_cross%3E71750968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71750968&rft_id=info:pmid/15037060&rft_els_id=S002839320300280X&rfr_iscdi=true |