Mining High-Throughput Screening Data of Combinatorial Libraries: Development of a Filter to Distinguish Hits from Nonhits
Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Information and Computer Sciences 2004-03, Vol.44 (2), p.626-634 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 2 |
container_start_page | 626 |
container_title | Journal of Chemical Information and Computer Sciences |
container_volume | 44 |
creator | Teckentrup, Andreas Briem, Hans Gasteiger, Johann |
description | Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries. |
doi_str_mv | 10.1021/ci034223v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71747257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>643728891</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</originalsourceid><addsrcrecordid>eNpl0U-L1DAUAPAgijuuHvwCEgQFD9W8pGkm3mTGdYVRB3YUbyHtvk6zts2YpIseBK9-TT-JWWfYBb0khPfj_ckj5CGw58A4vGgcEyXn4vIWmYEsdaEr9vk2mTGmZcGFmB-RezFeMCaErvhdcgSSCS7LckZ-vHOjG7f01G27YtMFP2273ZToWRMQ_0aWNlnqW7rwQ-1Gm3xwtqcrVwcbHMaXv3_-oku8xN7vBhzTFbX0xPUJA02eLl1MOc3kYpeLpEjb4Af63o9dftwnd1rbR3xwuI_Jx5PXm8Vpsfrw5u3i1aqwQlWpsBZYzRkDOy9brhF0CyWX5wq1ZgxtHkvKhqFWkE-wMG81aF1VWANq1OKYPN3n3QX_dcKYzOBig31vR_RTNApUqbhUGT7-B174KYy5N8Oh4kJzKDN6tkdN8DEGbM0uuMGG7waYuVqIuV5Ito8OCad6wPMbedhABsUe5H_Cb9dxG76YSgklzWZ9ZtYLvoZV9clssn-y97aJN839X_gP3oahrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216239214</pqid></control><display><type>article</type><title>Mining High-Throughput Screening Data of Combinatorial Libraries: Development of a Filter to Distinguish Hits from Nonhits</title><source>ACS Publications</source><creator>Teckentrup, Andreas ; Briem, Hans ; Gasteiger, Johann</creator><creatorcontrib>Teckentrup, Andreas ; Briem, Hans ; Gasteiger, Johann</creatorcontrib><description>Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries.</description><identifier>ISSN: 0095-2338</identifier><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci034223v</identifier><identifier>PMID: 15032544</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical compounds ; Data mining ; Pharmacology</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2004-03, Vol.44 (2), p.626-634</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Copyright American Chemical Society Mar/Apr 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</citedby><cites>FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci034223v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci034223v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15032544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teckentrup, Andreas</creatorcontrib><creatorcontrib>Briem, Hans</creatorcontrib><creatorcontrib>Gasteiger, Johann</creatorcontrib><title>Mining High-Throughput Screening Data of Combinatorial Libraries: Development of a Filter to Distinguish Hits from Nonhits</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries.</description><subject>Chemical compounds</subject><subject>Data mining</subject><subject>Pharmacology</subject><issn>0095-2338</issn><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpl0U-L1DAUAPAgijuuHvwCEgQFD9W8pGkm3mTGdYVRB3YUbyHtvk6zts2YpIseBK9-TT-JWWfYBb0khPfj_ckj5CGw58A4vGgcEyXn4vIWmYEsdaEr9vk2mTGmZcGFmB-RezFeMCaErvhdcgSSCS7LckZ-vHOjG7f01G27YtMFP2273ZToWRMQ_0aWNlnqW7rwQ-1Gm3xwtqcrVwcbHMaXv3_-oku8xN7vBhzTFbX0xPUJA02eLl1MOc3kYpeLpEjb4Af63o9dftwnd1rbR3xwuI_Jx5PXm8Vpsfrw5u3i1aqwQlWpsBZYzRkDOy9brhF0CyWX5wq1ZgxtHkvKhqFWkE-wMG81aF1VWANq1OKYPN3n3QX_dcKYzOBig31vR_RTNApUqbhUGT7-B174KYy5N8Oh4kJzKDN6tkdN8DEGbM0uuMGG7waYuVqIuV5Ito8OCad6wPMbedhABsUe5H_Cb9dxG76YSgklzWZ9ZtYLvoZV9clssn-y97aJN839X_gP3oahrw</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Teckentrup, Andreas</creator><creator>Briem, Hans</creator><creator>Gasteiger, Johann</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Mining High-Throughput Screening Data of Combinatorial Libraries: Development of a Filter to Distinguish Hits from Nonhits</title><author>Teckentrup, Andreas ; Briem, Hans ; Gasteiger, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chemical compounds</topic><topic>Data mining</topic><topic>Pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teckentrup, Andreas</creatorcontrib><creatorcontrib>Briem, Hans</creatorcontrib><creatorcontrib>Gasteiger, Johann</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teckentrup, Andreas</au><au>Briem, Hans</au><au>Gasteiger, Johann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining High-Throughput Screening Data of Combinatorial Libraries: Development of a Filter to Distinguish Hits from Nonhits</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>44</volume><issue>2</issue><spage>626</spage><epage>634</epage><pages>626-634</pages><issn>0095-2338</issn><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15032544</pmid><doi>10.1021/ci034223v</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-2338 |
ispartof | Journal of Chemical Information and Computer Sciences, 2004-03, Vol.44 (2), p.626-634 |
issn | 0095-2338 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_71747257 |
source | ACS Publications |
subjects | Chemical compounds Data mining Pharmacology |
title | Mining High-Throughput Screening Data of Combinatorial Libraries: Development of a Filter to Distinguish Hits from Nonhits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20High-Throughput%20Screening%20Data%20of%20Combinatorial%20Libraries:%E2%80%89%20Development%20of%20a%20Filter%20to%20Distinguish%20Hits%20from%20Nonhits&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Teckentrup,%20Andreas&rft.date=2004-03-01&rft.volume=44&rft.issue=2&rft.spage=626&rft.epage=634&rft.pages=626-634&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci034223v&rft_dat=%3Cproquest_cross%3E643728891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216239214&rft_id=info:pmid/15032544&rfr_iscdi=true |