Mining High-Throughput Screening Data of Combinatorial Libraries:  Development of a Filter to Distinguish Hits from Nonhits

Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Information and Computer Sciences 2004-03, Vol.44 (2), p.626-634
Hauptverfasser: Teckentrup, Andreas, Briem, Hans, Gasteiger, Johann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 2
container_start_page 626
container_title Journal of Chemical Information and Computer Sciences
container_volume 44
creator Teckentrup, Andreas
Briem, Hans
Gasteiger, Johann
description Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries.
doi_str_mv 10.1021/ci034223v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71747257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>643728891</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</originalsourceid><addsrcrecordid>eNpl0U-L1DAUAPAgijuuHvwCEgQFD9W8pGkm3mTGdYVRB3YUbyHtvk6zts2YpIseBK9-TT-JWWfYBb0khPfj_ckj5CGw58A4vGgcEyXn4vIWmYEsdaEr9vk2mTGmZcGFmB-RezFeMCaErvhdcgSSCS7LckZ-vHOjG7f01G27YtMFP2273ZToWRMQ_0aWNlnqW7rwQ-1Gm3xwtqcrVwcbHMaXv3_-oku8xN7vBhzTFbX0xPUJA02eLl1MOc3kYpeLpEjb4Af63o9dftwnd1rbR3xwuI_Jx5PXm8Vpsfrw5u3i1aqwQlWpsBZYzRkDOy9brhF0CyWX5wq1ZgxtHkvKhqFWkE-wMG81aF1VWANq1OKYPN3n3QX_dcKYzOBig31vR_RTNApUqbhUGT7-B174KYy5N8Oh4kJzKDN6tkdN8DEGbM0uuMGG7waYuVqIuV5Ito8OCad6wPMbedhABsUe5H_Cb9dxG76YSgklzWZ9ZtYLvoZV9clssn-y97aJN839X_gP3oahrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216239214</pqid></control><display><type>article</type><title>Mining High-Throughput Screening Data of Combinatorial Libraries:  Development of a Filter to Distinguish Hits from Nonhits</title><source>ACS Publications</source><creator>Teckentrup, Andreas ; Briem, Hans ; Gasteiger, Johann</creator><creatorcontrib>Teckentrup, Andreas ; Briem, Hans ; Gasteiger, Johann</creatorcontrib><description>Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries.</description><identifier>ISSN: 0095-2338</identifier><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci034223v</identifier><identifier>PMID: 15032544</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical compounds ; Data mining ; Pharmacology</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2004-03, Vol.44 (2), p.626-634</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Copyright American Chemical Society Mar/Apr 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</citedby><cites>FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci034223v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci034223v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15032544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teckentrup, Andreas</creatorcontrib><creatorcontrib>Briem, Hans</creatorcontrib><creatorcontrib>Gasteiger, Johann</creatorcontrib><title>Mining High-Throughput Screening Data of Combinatorial Libraries:  Development of a Filter to Distinguish Hits from Nonhits</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries.</description><subject>Chemical compounds</subject><subject>Data mining</subject><subject>Pharmacology</subject><issn>0095-2338</issn><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpl0U-L1DAUAPAgijuuHvwCEgQFD9W8pGkm3mTGdYVRB3YUbyHtvk6zts2YpIseBK9-TT-JWWfYBb0khPfj_ckj5CGw58A4vGgcEyXn4vIWmYEsdaEr9vk2mTGmZcGFmB-RezFeMCaErvhdcgSSCS7LckZ-vHOjG7f01G27YtMFP2273ZToWRMQ_0aWNlnqW7rwQ-1Gm3xwtqcrVwcbHMaXv3_-oku8xN7vBhzTFbX0xPUJA02eLl1MOc3kYpeLpEjb4Af63o9dftwnd1rbR3xwuI_Jx5PXm8Vpsfrw5u3i1aqwQlWpsBZYzRkDOy9brhF0CyWX5wq1ZgxtHkvKhqFWkE-wMG81aF1VWANq1OKYPN3n3QX_dcKYzOBig31vR_RTNApUqbhUGT7-B174KYy5N8Oh4kJzKDN6tkdN8DEGbM0uuMGG7waYuVqIuV5Ito8OCad6wPMbedhABsUe5H_Cb9dxG76YSgklzWZ9ZtYLvoZV9clssn-y97aJN839X_gP3oahrw</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Teckentrup, Andreas</creator><creator>Briem, Hans</creator><creator>Gasteiger, Johann</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>Mining High-Throughput Screening Data of Combinatorial Libraries:  Development of a Filter to Distinguish Hits from Nonhits</title><author>Teckentrup, Andreas ; Briem, Hans ; Gasteiger, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-aa10b2001a84f29e19f1425d7e9900ea33955c0e971c0e1a18f919966eb1e9e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chemical compounds</topic><topic>Data mining</topic><topic>Pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teckentrup, Andreas</creatorcontrib><creatorcontrib>Briem, Hans</creatorcontrib><creatorcontrib>Gasteiger, Johann</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teckentrup, Andreas</au><au>Briem, Hans</au><au>Gasteiger, Johann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining High-Throughput Screening Data of Combinatorial Libraries:  Development of a Filter to Distinguish Hits from Nonhits</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>44</volume><issue>2</issue><spage>626</spage><epage>634</epage><pages>626-634</pages><issn>0095-2338</issn><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Kohonen neural networks generate projections of large data sets defined in high-dimensional space. The resulting self-organizing maps can be used in many applications in the drug discovery process, such as to analyze combinatorial libraries for their similarity or diversity and to select descriptors for structure−activity relationships. The ability to investigate thousands of compounds in parallel also allows one to conduct a study based on single-dose experiments of high-throughput screening campaigns, which are known to have a greater uncertainty than IC50 or K i values. This is demonstrated here for a data set of 5513 compounds from one combinatorial library. Furthermore, a method was developed that uses self-organizing maps not only as an indicator of structure−activity relationships, but as the basis of a classification system allowing predictive modeling of combinatorial libraries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15032544</pmid><doi>10.1021/ci034223v</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-2338
ispartof Journal of Chemical Information and Computer Sciences, 2004-03, Vol.44 (2), p.626-634
issn 0095-2338
1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_71747257
source ACS Publications
subjects Chemical compounds
Data mining
Pharmacology
title Mining High-Throughput Screening Data of Combinatorial Libraries:  Development of a Filter to Distinguish Hits from Nonhits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20High-Throughput%20Screening%20Data%20of%20Combinatorial%20Libraries:%E2%80%89%20Development%20of%20a%20Filter%20to%20Distinguish%20Hits%20from%20Nonhits&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Teckentrup,%20Andreas&rft.date=2004-03-01&rft.volume=44&rft.issue=2&rft.spage=626&rft.epage=634&rft.pages=626-634&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci034223v&rft_dat=%3Cproquest_cross%3E643728891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216239214&rft_id=info:pmid/15032544&rfr_iscdi=true