Structure–function of human 3α-hydroxysteroid dehydrogenases: genes and proteins

Four soluble human 3α-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo–keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20α(3α)-HSD); AKR1C2 (type 3 3α-HSD and bile-acid binding protein); AKR1C3 (type 2 3α-HSD and type 5 17β-HSD);...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular endocrinology 2004-02, Vol.215 (1), p.63-72
Hauptverfasser: Penning, T.M., Jin, Y., Steckelbroeck, S., Lanišnik Rižner, T., Lewis, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 63
container_title Molecular and cellular endocrinology
container_volume 215
creator Penning, T.M.
Jin, Y.
Steckelbroeck, S.
Lanišnik Rižner, T.
Lewis, M.
description Four soluble human 3α-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo–keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20α(3α)-HSD); AKR1C2 (type 3 3α-HSD and bile-acid binding protein); AKR1C3 (type 2 3α-HSD and type 5 17β-HSD); and AKR1C4 (type 1 3α-HSD). Each of the homogeneous recombinant enzymes are plastic and display 3-, 17- and 20-ketosteroid reductase and 3α- 17β- and 20α-hydroxysteroid oxidase activities with different k cat/ K m ratios in vitro. The crystal structure of the AKR1C2·NADP +·ursodeoxycholate complex provides an explanation for this functional plasticity. Ursodeoxycholate is bound backwards (D-ring in the A-ring position) and upside down (β-face of steroid inverted) relative to the position of 3-ketosteroids in the related rat liver 3α-HSD (AKR1C9) structure. Transient transfection indicates that in COS-1 cells, AKR1C enzymes function as ketosteroid reductases due to potent inhibition of their oxidase activity by NADPH. By acting as ketosteroid reductases they may regulate the occupancy of the androgen, estrogen and progesterone receptors. RT-PCR showed that AKRs are discretely localized. AKR1C4 is virtually liver specific, while AKR1C2 and AKR1C3 are dominantly expressed in prostate and mammary gland. AKR1C genes are highly conserved in structure and may be transcriptionally regulated by steroid hormones and stress.
doi_str_mv 10.1016/j.mce.2003.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71745522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303720703005057</els_id><sourcerecordid>71745522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-701af1e87d9bf927e63e9f862be2d4699ea3922d0797eb59e460bf43811412153</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EoqVwADYoK3YJM3YSJ7BCFX9SJRbA2krsCbhqErATRHfcgZNwEQ7BSQi0EjtYzWj0vm-kx9g-QoSA6dE8qjVFHEBEiBFAusHGmEkeZpDITTYGASKUHOSI7Xg_BwCZ8GybjTABnqJMx-zmpnO97npHn69vVd_ozrZN0FbBQ18XTSA-3sOHpXHty9J35FprAkM_h3tqCk_-OBgW8kHRmODRtR3Zxu-yrapYeNpbzwm7Oz-7nV6Gs-uLq-npLNQigy6UgEWFlEmTl1XOJaWC8ipLeUncxGmeUyFyzg3IXFKZ5BSnUFaxyBBj5JiICTtc9Q6Pn3rynaqt17RYFA21vVcSZZwknP8LckQp4xgGEFegdq33jir16GxduKVCUN_K1VwNytW3coWoBuVD5mBd3pc1md_E2vEAnKwAGlw8W3LKa0uNJmMd6U6Z1v5R_wVeMJMh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21177440</pqid></control><display><type>article</type><title>Structure–function of human 3α-hydroxysteroid dehydrogenases: genes and proteins</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Penning, T.M. ; Jin, Y. ; Steckelbroeck, S. ; Lanišnik Rižner, T. ; Lewis, M.</creator><creatorcontrib>Penning, T.M. ; Jin, Y. ; Steckelbroeck, S. ; Lanišnik Rižner, T. ; Lewis, M.</creatorcontrib><description>Four soluble human 3α-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo–keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20α(3α)-HSD); AKR1C2 (type 3 3α-HSD and bile-acid binding protein); AKR1C3 (type 2 3α-HSD and type 5 17β-HSD); and AKR1C4 (type 1 3α-HSD). Each of the homogeneous recombinant enzymes are plastic and display 3-, 17- and 20-ketosteroid reductase and 3α- 17β- and 20α-hydroxysteroid oxidase activities with different k cat/ K m ratios in vitro. The crystal structure of the AKR1C2·NADP +·ursodeoxycholate complex provides an explanation for this functional plasticity. Ursodeoxycholate is bound backwards (D-ring in the A-ring position) and upside down (β-face of steroid inverted) relative to the position of 3-ketosteroids in the related rat liver 3α-HSD (AKR1C9) structure. Transient transfection indicates that in COS-1 cells, AKR1C enzymes function as ketosteroid reductases due to potent inhibition of their oxidase activity by NADPH. By acting as ketosteroid reductases they may regulate the occupancy of the androgen, estrogen and progesterone receptors. RT-PCR showed that AKRs are discretely localized. AKR1C4 is virtually liver specific, while AKR1C2 and AKR1C3 are dominantly expressed in prostate and mammary gland. AKR1C genes are highly conserved in structure and may be transcriptionally regulated by steroid hormones and stress.</description><identifier>ISSN: 0303-7207</identifier><identifier>EISSN: 1872-8057</identifier><identifier>DOI: 10.1016/j.mce.2003.11.006</identifier><identifier>PMID: 15026176</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>3-Hydroxysteroid Dehydrogenases - genetics ; 3-Hydroxysteroid Dehydrogenases - metabolism ; 3α-Hydroxysteroid dehydrogenase (HSD) ; Aldo–keto reductase (AKR) ; Animals ; Estrogen receptor ; Exons ; Humans ; Introns ; Isoenzymes - metabolism ; Rats ; Structure-Activity Relationship</subject><ispartof>Molecular and cellular endocrinology, 2004-02, Vol.215 (1), p.63-72</ispartof><rights>2003 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-701af1e87d9bf927e63e9f862be2d4699ea3922d0797eb59e460bf43811412153</citedby><cites>FETCH-LOGICAL-c380t-701af1e87d9bf927e63e9f862be2d4699ea3922d0797eb59e460bf43811412153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0303720703005057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15026176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Penning, T.M.</creatorcontrib><creatorcontrib>Jin, Y.</creatorcontrib><creatorcontrib>Steckelbroeck, S.</creatorcontrib><creatorcontrib>Lanišnik Rižner, T.</creatorcontrib><creatorcontrib>Lewis, M.</creatorcontrib><title>Structure–function of human 3α-hydroxysteroid dehydrogenases: genes and proteins</title><title>Molecular and cellular endocrinology</title><addtitle>Mol Cell Endocrinol</addtitle><description>Four soluble human 3α-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo–keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20α(3α)-HSD); AKR1C2 (type 3 3α-HSD and bile-acid binding protein); AKR1C3 (type 2 3α-HSD and type 5 17β-HSD); and AKR1C4 (type 1 3α-HSD). Each of the homogeneous recombinant enzymes are plastic and display 3-, 17- and 20-ketosteroid reductase and 3α- 17β- and 20α-hydroxysteroid oxidase activities with different k cat/ K m ratios in vitro. The crystal structure of the AKR1C2·NADP +·ursodeoxycholate complex provides an explanation for this functional plasticity. Ursodeoxycholate is bound backwards (D-ring in the A-ring position) and upside down (β-face of steroid inverted) relative to the position of 3-ketosteroids in the related rat liver 3α-HSD (AKR1C9) structure. Transient transfection indicates that in COS-1 cells, AKR1C enzymes function as ketosteroid reductases due to potent inhibition of their oxidase activity by NADPH. By acting as ketosteroid reductases they may regulate the occupancy of the androgen, estrogen and progesterone receptors. RT-PCR showed that AKRs are discretely localized. AKR1C4 is virtually liver specific, while AKR1C2 and AKR1C3 are dominantly expressed in prostate and mammary gland. AKR1C genes are highly conserved in structure and may be transcriptionally regulated by steroid hormones and stress.</description><subject>3-Hydroxysteroid Dehydrogenases - genetics</subject><subject>3-Hydroxysteroid Dehydrogenases - metabolism</subject><subject>3α-Hydroxysteroid dehydrogenase (HSD)</subject><subject>Aldo–keto reductase (AKR)</subject><subject>Animals</subject><subject>Estrogen receptor</subject><subject>Exons</subject><subject>Humans</subject><subject>Introns</subject><subject>Isoenzymes - metabolism</subject><subject>Rats</subject><subject>Structure-Activity Relationship</subject><issn>0303-7207</issn><issn>1872-8057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1OwzAQRi0EoqVwADYoK3YJM3YSJ7BCFX9SJRbA2krsCbhqErATRHfcgZNwEQ7BSQi0EjtYzWj0vm-kx9g-QoSA6dE8qjVFHEBEiBFAusHGmEkeZpDITTYGASKUHOSI7Xg_BwCZ8GybjTABnqJMx-zmpnO97npHn69vVd_ozrZN0FbBQ18XTSA-3sOHpXHty9J35FprAkM_h3tqCk_-OBgW8kHRmODRtR3Zxu-yrapYeNpbzwm7Oz-7nV6Gs-uLq-npLNQigy6UgEWFlEmTl1XOJaWC8ipLeUncxGmeUyFyzg3IXFKZ5BSnUFaxyBBj5JiICTtc9Q6Pn3rynaqt17RYFA21vVcSZZwknP8LckQp4xgGEFegdq33jir16GxduKVCUN_K1VwNytW3coWoBuVD5mBd3pc1md_E2vEAnKwAGlw8W3LKa0uNJmMd6U6Z1v5R_wVeMJMh</recordid><startdate>20040227</startdate><enddate>20040227</enddate><creator>Penning, T.M.</creator><creator>Jin, Y.</creator><creator>Steckelbroeck, S.</creator><creator>Lanišnik Rižner, T.</creator><creator>Lewis, M.</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040227</creationdate><title>Structure–function of human 3α-hydroxysteroid dehydrogenases: genes and proteins</title><author>Penning, T.M. ; Jin, Y. ; Steckelbroeck, S. ; Lanišnik Rižner, T. ; Lewis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-701af1e87d9bf927e63e9f862be2d4699ea3922d0797eb59e460bf43811412153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>3-Hydroxysteroid Dehydrogenases - genetics</topic><topic>3-Hydroxysteroid Dehydrogenases - metabolism</topic><topic>3α-Hydroxysteroid dehydrogenase (HSD)</topic><topic>Aldo–keto reductase (AKR)</topic><topic>Animals</topic><topic>Estrogen receptor</topic><topic>Exons</topic><topic>Humans</topic><topic>Introns</topic><topic>Isoenzymes - metabolism</topic><topic>Rats</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penning, T.M.</creatorcontrib><creatorcontrib>Jin, Y.</creatorcontrib><creatorcontrib>Steckelbroeck, S.</creatorcontrib><creatorcontrib>Lanišnik Rižner, T.</creatorcontrib><creatorcontrib>Lewis, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penning, T.M.</au><au>Jin, Y.</au><au>Steckelbroeck, S.</au><au>Lanišnik Rižner, T.</au><au>Lewis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–function of human 3α-hydroxysteroid dehydrogenases: genes and proteins</atitle><jtitle>Molecular and cellular endocrinology</jtitle><addtitle>Mol Cell Endocrinol</addtitle><date>2004-02-27</date><risdate>2004</risdate><volume>215</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0303-7207</issn><eissn>1872-8057</eissn><abstract>Four soluble human 3α-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo–keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20α(3α)-HSD); AKR1C2 (type 3 3α-HSD and bile-acid binding protein); AKR1C3 (type 2 3α-HSD and type 5 17β-HSD); and AKR1C4 (type 1 3α-HSD). Each of the homogeneous recombinant enzymes are plastic and display 3-, 17- and 20-ketosteroid reductase and 3α- 17β- and 20α-hydroxysteroid oxidase activities with different k cat/ K m ratios in vitro. The crystal structure of the AKR1C2·NADP +·ursodeoxycholate complex provides an explanation for this functional plasticity. Ursodeoxycholate is bound backwards (D-ring in the A-ring position) and upside down (β-face of steroid inverted) relative to the position of 3-ketosteroids in the related rat liver 3α-HSD (AKR1C9) structure. Transient transfection indicates that in COS-1 cells, AKR1C enzymes function as ketosteroid reductases due to potent inhibition of their oxidase activity by NADPH. By acting as ketosteroid reductases they may regulate the occupancy of the androgen, estrogen and progesterone receptors. RT-PCR showed that AKRs are discretely localized. AKR1C4 is virtually liver specific, while AKR1C2 and AKR1C3 are dominantly expressed in prostate and mammary gland. AKR1C genes are highly conserved in structure and may be transcriptionally regulated by steroid hormones and stress.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>15026176</pmid><doi>10.1016/j.mce.2003.11.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-7207
ispartof Molecular and cellular endocrinology, 2004-02, Vol.215 (1), p.63-72
issn 0303-7207
1872-8057
language eng
recordid cdi_proquest_miscellaneous_71745522
source MEDLINE; Elsevier ScienceDirect Journals
subjects 3-Hydroxysteroid Dehydrogenases - genetics
3-Hydroxysteroid Dehydrogenases - metabolism
3α-Hydroxysteroid dehydrogenase (HSD)
Aldo–keto reductase (AKR)
Animals
Estrogen receptor
Exons
Humans
Introns
Isoenzymes - metabolism
Rats
Structure-Activity Relationship
title Structure–function of human 3α-hydroxysteroid dehydrogenases: genes and proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93function%20of%20human%203%CE%B1-hydroxysteroid%20dehydrogenases:%20genes%20and%20proteins&rft.jtitle=Molecular%20and%20cellular%20endocrinology&rft.au=Penning,%20T.M.&rft.date=2004-02-27&rft.volume=215&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0303-7207&rft.eissn=1872-8057&rft_id=info:doi/10.1016/j.mce.2003.11.006&rft_dat=%3Cproquest_cross%3E71745522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21177440&rft_id=info:pmid/15026176&rft_els_id=S0303720703005057&rfr_iscdi=true