Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory
Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine foreb...
Gespeichert in:
Veröffentlicht in: | Cell 2004-02, Vol.116 (3), p.467-479 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 3 |
container_start_page | 467 |
container_title | Cell |
container_volume | 116 |
creator | Kelleher, Raymond J Govindarajan, Arvind Jung, Hae-Yoon Kang, Hyejin Tonegawa, Susumu |
description | Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory. |
doi_str_mv | 10.1016/S0092-8674(04)00115-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71741381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867404001151</els_id><sourcerecordid>17918742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</originalsourceid><addsrcrecordid>eNqFkNFq2zAUhsVYWdO0j7Chq7FeuD3Hliz7aoTQbqMpLSS9FookBw1byiRn4Lev3YTtsnDgh8N3zg8fIZ8RbhCwvF0D1HlWlYJ9A3YNgMgz_EBmCLXIGIr8I5n9Q87JRUq_AaDinH8i58jHF0UFM7LeROVTq3oXvGrpMvg-hpZuB_q4eH6ga7cb187vqPN0Ffwu29jY0fXg1b53mj63Ko3p-oEqb-ij7UIcLslZo9pkr045Jy_3d5vlz2z19OPXcrHKNOeizwoslG5qgwhiW5ZaI2tyMAUHVjVNUfKtqeucmZpjLSzn2iLjVVMBA2NRqGJOvh7_7mP4c7Cpl51L2rat8jYckhQoGBYVvguiqLESLB9BfgR1DClF28h9dJ2Kg0SQk3b5pl1OTiWMM2mXU8GXU8Fh21nz_-rkeQS-HwE7-vjrbJRJO-u1NS5a3UsT3DsVr7r4kHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17918742</pqid></control><display><type>article</type><title>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kelleher, Raymond J ; Govindarajan, Arvind ; Jung, Hae-Yoon ; Kang, Hyejin ; Tonegawa, Susumu</creator><creatorcontrib>Kelleher, Raymond J ; Govindarajan, Arvind ; Jung, Hae-Yoon ; Kang, Hyejin ; Tonegawa, Susumu</creatorcontrib><description>Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/S0092-8674(04)00115-1</identifier><identifier>PMID: 15016380</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cells, Cultured ; Enzyme Inhibitors - pharmacology ; Eukaryotic Initiation Factor-4E - genetics ; Eukaryotic Initiation Factor-4E - metabolism ; Gene Expression Regulation, Enzymologic - genetics ; Hippocampus - cytology ; Hippocampus - enzymology ; Hippocampus - growth & development ; In Vitro Techniques ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; MAP Kinase Kinase 1 ; MAP Kinase Signaling System - drug effects ; MAP Kinase Signaling System - physiology ; Memory - drug effects ; Memory - physiology ; Memory Disorders - enzymology ; Memory Disorders - genetics ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Mutation - genetics ; Neuronal Plasticity - physiology ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation - drug effects ; Protein Biosynthesis - physiology ; Rats ; Ribosomal Protein S6 - genetics ; Ribosomal Protein S6 - metabolism ; Synapses - drug effects ; Synapses - enzymology ; Synapses - ultrastructure</subject><ispartof>Cell, 2004-02, Vol.116 (3), p.467-479</ispartof><rights>2004 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</citedby><cites>FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867404001151$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15016380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelleher, Raymond J</creatorcontrib><creatorcontrib>Govindarajan, Arvind</creatorcontrib><creatorcontrib>Jung, Hae-Yoon</creatorcontrib><creatorcontrib>Kang, Hyejin</creatorcontrib><creatorcontrib>Tonegawa, Susumu</creatorcontrib><title>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</title><title>Cell</title><addtitle>Cell</addtitle><description>Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Eukaryotic Initiation Factor-4E - genetics</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Gene Expression Regulation, Enzymologic - genetics</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - enzymology</subject><subject>Hippocampus - growth & development</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>MAP Kinase Kinase 1</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>Memory - drug effects</subject><subject>Memory - physiology</subject><subject>Memory Disorders - enzymology</subject><subject>Memory Disorders - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mutation - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Biosynthesis - physiology</subject><subject>Rats</subject><subject>Ribosomal Protein S6 - genetics</subject><subject>Ribosomal Protein S6 - metabolism</subject><subject>Synapses - drug effects</subject><subject>Synapses - enzymology</subject><subject>Synapses - ultrastructure</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkNFq2zAUhsVYWdO0j7Chq7FeuD3Hliz7aoTQbqMpLSS9FookBw1byiRn4Lev3YTtsnDgh8N3zg8fIZ8RbhCwvF0D1HlWlYJ9A3YNgMgz_EBmCLXIGIr8I5n9Q87JRUq_AaDinH8i58jHF0UFM7LeROVTq3oXvGrpMvg-hpZuB_q4eH6ga7cb187vqPN0Ffwu29jY0fXg1b53mj63Ko3p-oEqb-ij7UIcLslZo9pkr045Jy_3d5vlz2z19OPXcrHKNOeizwoslG5qgwhiW5ZaI2tyMAUHVjVNUfKtqeucmZpjLSzn2iLjVVMBA2NRqGJOvh7_7mP4c7Cpl51L2rat8jYckhQoGBYVvguiqLESLB9BfgR1DClF28h9dJ2Kg0SQk3b5pl1OTiWMM2mXU8GXU8Fh21nz_-rkeQS-HwE7-vjrbJRJO-u1NS5a3UsT3DsVr7r4kHI</recordid><startdate>20040206</startdate><enddate>20040206</enddate><creator>Kelleher, Raymond J</creator><creator>Govindarajan, Arvind</creator><creator>Jung, Hae-Yoon</creator><creator>Kang, Hyejin</creator><creator>Tonegawa, Susumu</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20040206</creationdate><title>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</title><author>Kelleher, Raymond J ; Govindarajan, Arvind ; Jung, Hae-Yoon ; Kang, Hyejin ; Tonegawa, Susumu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Eukaryotic Initiation Factor-4E - genetics</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Gene Expression Regulation, Enzymologic - genetics</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - enzymology</topic><topic>Hippocampus - growth & development</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>MAP Kinase Kinase 1</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>Memory - drug effects</topic><topic>Memory - physiology</topic><topic>Memory Disorders - enzymology</topic><topic>Memory Disorders - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mutation - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Biosynthesis - physiology</topic><topic>Rats</topic><topic>Ribosomal Protein S6 - genetics</topic><topic>Ribosomal Protein S6 - metabolism</topic><topic>Synapses - drug effects</topic><topic>Synapses - enzymology</topic><topic>Synapses - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelleher, Raymond J</creatorcontrib><creatorcontrib>Govindarajan, Arvind</creatorcontrib><creatorcontrib>Jung, Hae-Yoon</creatorcontrib><creatorcontrib>Kang, Hyejin</creatorcontrib><creatorcontrib>Tonegawa, Susumu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelleher, Raymond J</au><au>Govindarajan, Arvind</au><au>Jung, Hae-Yoon</au><au>Kang, Hyejin</au><au>Tonegawa, Susumu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2004-02-06</date><risdate>2004</risdate><volume>116</volume><issue>3</issue><spage>467</spage><epage>479</epage><pages>467-479</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15016380</pmid><doi>10.1016/S0092-8674(04)00115-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2004-02, Vol.116 (3), p.467-479 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_71741381 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Animals, Newborn Carrier Proteins - genetics Carrier Proteins - metabolism Cells, Cultured Enzyme Inhibitors - pharmacology Eukaryotic Initiation Factor-4E - genetics Eukaryotic Initiation Factor-4E - metabolism Gene Expression Regulation, Enzymologic - genetics Hippocampus - cytology Hippocampus - enzymology Hippocampus - growth & development In Vitro Techniques Long-Term Potentiation - drug effects Long-Term Potentiation - physiology MAP Kinase Kinase 1 MAP Kinase Signaling System - drug effects MAP Kinase Signaling System - physiology Memory - drug effects Memory - physiology Memory Disorders - enzymology Memory Disorders - genetics Mice Mice, Transgenic Mitogen-Activated Protein Kinase 3 Mitogen-Activated Protein Kinase Kinases - genetics Mitogen-Activated Protein Kinase Kinases - metabolism Mitogen-Activated Protein Kinases - genetics Mitogen-Activated Protein Kinases - metabolism Mutation - genetics Neuronal Plasticity - physiology Phosphoproteins - genetics Phosphoproteins - metabolism Phosphorylation - drug effects Protein Biosynthesis - physiology Rats Ribosomal Protein S6 - genetics Ribosomal Protein S6 - metabolism Synapses - drug effects Synapses - enzymology Synapses - ultrastructure |
title | Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20Control%20by%20MAPK%20Signaling%20in%20Long-Term%20Synaptic%20Plasticity%20and%20Memory&rft.jtitle=Cell&rft.au=Kelleher,%20Raymond%20J&rft.date=2004-02-06&rft.volume=116&rft.issue=3&rft.spage=467&rft.epage=479&rft.pages=467-479&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/S0092-8674(04)00115-1&rft_dat=%3Cproquest_cross%3E17918742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17918742&rft_id=info:pmid/15016380&rft_els_id=S0092867404001151&rfr_iscdi=true |