Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory

Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine foreb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2004-02, Vol.116 (3), p.467-479
Hauptverfasser: Kelleher, Raymond J, Govindarajan, Arvind, Jung, Hae-Yoon, Kang, Hyejin, Tonegawa, Susumu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 3
container_start_page 467
container_title Cell
container_volume 116
creator Kelleher, Raymond J
Govindarajan, Arvind
Jung, Hae-Yoon
Kang, Hyejin
Tonegawa, Susumu
description Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.
doi_str_mv 10.1016/S0092-8674(04)00115-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71741381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867404001151</els_id><sourcerecordid>17918742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</originalsourceid><addsrcrecordid>eNqFkNFq2zAUhsVYWdO0j7Chq7FeuD3Hliz7aoTQbqMpLSS9FookBw1byiRn4Lev3YTtsnDgh8N3zg8fIZ8RbhCwvF0D1HlWlYJ9A3YNgMgz_EBmCLXIGIr8I5n9Q87JRUq_AaDinH8i58jHF0UFM7LeROVTq3oXvGrpMvg-hpZuB_q4eH6ga7cb187vqPN0Ffwu29jY0fXg1b53mj63Ko3p-oEqb-ij7UIcLslZo9pkr045Jy_3d5vlz2z19OPXcrHKNOeizwoslG5qgwhiW5ZaI2tyMAUHVjVNUfKtqeucmZpjLSzn2iLjVVMBA2NRqGJOvh7_7mP4c7Cpl51L2rat8jYckhQoGBYVvguiqLESLB9BfgR1DClF28h9dJ2Kg0SQk3b5pl1OTiWMM2mXU8GXU8Fh21nz_-rkeQS-HwE7-vjrbJRJO-u1NS5a3UsT3DsVr7r4kHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17918742</pqid></control><display><type>article</type><title>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kelleher, Raymond J ; Govindarajan, Arvind ; Jung, Hae-Yoon ; Kang, Hyejin ; Tonegawa, Susumu</creator><creatorcontrib>Kelleher, Raymond J ; Govindarajan, Arvind ; Jung, Hae-Yoon ; Kang, Hyejin ; Tonegawa, Susumu</creatorcontrib><description>Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/S0092-8674(04)00115-1</identifier><identifier>PMID: 15016380</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Animals, Newborn ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cells, Cultured ; Enzyme Inhibitors - pharmacology ; Eukaryotic Initiation Factor-4E - genetics ; Eukaryotic Initiation Factor-4E - metabolism ; Gene Expression Regulation, Enzymologic - genetics ; Hippocampus - cytology ; Hippocampus - enzymology ; Hippocampus - growth &amp; development ; In Vitro Techniques ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; MAP Kinase Kinase 1 ; MAP Kinase Signaling System - drug effects ; MAP Kinase Signaling System - physiology ; Memory - drug effects ; Memory - physiology ; Memory Disorders - enzymology ; Memory Disorders - genetics ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Mutation - genetics ; Neuronal Plasticity - physiology ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Phosphorylation - drug effects ; Protein Biosynthesis - physiology ; Rats ; Ribosomal Protein S6 - genetics ; Ribosomal Protein S6 - metabolism ; Synapses - drug effects ; Synapses - enzymology ; Synapses - ultrastructure</subject><ispartof>Cell, 2004-02, Vol.116 (3), p.467-479</ispartof><rights>2004 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</citedby><cites>FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867404001151$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15016380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelleher, Raymond J</creatorcontrib><creatorcontrib>Govindarajan, Arvind</creatorcontrib><creatorcontrib>Jung, Hae-Yoon</creatorcontrib><creatorcontrib>Kang, Hyejin</creatorcontrib><creatorcontrib>Tonegawa, Susumu</creatorcontrib><title>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</title><title>Cell</title><addtitle>Cell</addtitle><description>Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Eukaryotic Initiation Factor-4E - genetics</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Gene Expression Regulation, Enzymologic - genetics</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - enzymology</subject><subject>Hippocampus - growth &amp; development</subject><subject>In Vitro Techniques</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>MAP Kinase Kinase 1</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>Memory - drug effects</subject><subject>Memory - physiology</subject><subject>Memory Disorders - enzymology</subject><subject>Memory Disorders - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mutation - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Biosynthesis - physiology</subject><subject>Rats</subject><subject>Ribosomal Protein S6 - genetics</subject><subject>Ribosomal Protein S6 - metabolism</subject><subject>Synapses - drug effects</subject><subject>Synapses - enzymology</subject><subject>Synapses - ultrastructure</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkNFq2zAUhsVYWdO0j7Chq7FeuD3Hliz7aoTQbqMpLSS9FookBw1byiRn4Lev3YTtsnDgh8N3zg8fIZ8RbhCwvF0D1HlWlYJ9A3YNgMgz_EBmCLXIGIr8I5n9Q87JRUq_AaDinH8i58jHF0UFM7LeROVTq3oXvGrpMvg-hpZuB_q4eH6ga7cb187vqPN0Ffwu29jY0fXg1b53mj63Ko3p-oEqb-ij7UIcLslZo9pkr045Jy_3d5vlz2z19OPXcrHKNOeizwoslG5qgwhiW5ZaI2tyMAUHVjVNUfKtqeucmZpjLSzn2iLjVVMBA2NRqGJOvh7_7mP4c7Cpl51L2rat8jYckhQoGBYVvguiqLESLB9BfgR1DClF28h9dJ2Kg0SQk3b5pl1OTiWMM2mXU8GXU8Fh21nz_-rkeQS-HwE7-vjrbJRJO-u1NS5a3UsT3DsVr7r4kHI</recordid><startdate>20040206</startdate><enddate>20040206</enddate><creator>Kelleher, Raymond J</creator><creator>Govindarajan, Arvind</creator><creator>Jung, Hae-Yoon</creator><creator>Kang, Hyejin</creator><creator>Tonegawa, Susumu</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20040206</creationdate><title>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</title><author>Kelleher, Raymond J ; Govindarajan, Arvind ; Jung, Hae-Yoon ; Kang, Hyejin ; Tonegawa, Susumu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-313acf9d1107b66cc14f20d35048ff365bd9924d95197e55ce1458f8040de17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Eukaryotic Initiation Factor-4E - genetics</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Gene Expression Regulation, Enzymologic - genetics</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - enzymology</topic><topic>Hippocampus - growth &amp; development</topic><topic>In Vitro Techniques</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>MAP Kinase Kinase 1</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>Memory - drug effects</topic><topic>Memory - physiology</topic><topic>Memory Disorders - enzymology</topic><topic>Memory Disorders - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mutation - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Biosynthesis - physiology</topic><topic>Rats</topic><topic>Ribosomal Protein S6 - genetics</topic><topic>Ribosomal Protein S6 - metabolism</topic><topic>Synapses - drug effects</topic><topic>Synapses - enzymology</topic><topic>Synapses - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelleher, Raymond J</creatorcontrib><creatorcontrib>Govindarajan, Arvind</creatorcontrib><creatorcontrib>Jung, Hae-Yoon</creatorcontrib><creatorcontrib>Kang, Hyejin</creatorcontrib><creatorcontrib>Tonegawa, Susumu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelleher, Raymond J</au><au>Govindarajan, Arvind</au><au>Jung, Hae-Yoon</au><au>Kang, Hyejin</au><au>Tonegawa, Susumu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2004-02-06</date><risdate>2004</risdate><volume>116</volume><issue>3</issue><spage>467</spage><epage>479</epage><pages>467-479</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15016380</pmid><doi>10.1016/S0092-8674(04)00115-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2004-02, Vol.116 (3), p.467-479
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_71741381
source MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Animals, Newborn
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cells, Cultured
Enzyme Inhibitors - pharmacology
Eukaryotic Initiation Factor-4E - genetics
Eukaryotic Initiation Factor-4E - metabolism
Gene Expression Regulation, Enzymologic - genetics
Hippocampus - cytology
Hippocampus - enzymology
Hippocampus - growth & development
In Vitro Techniques
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
MAP Kinase Kinase 1
MAP Kinase Signaling System - drug effects
MAP Kinase Signaling System - physiology
Memory - drug effects
Memory - physiology
Memory Disorders - enzymology
Memory Disorders - genetics
Mice
Mice, Transgenic
Mitogen-Activated Protein Kinase 3
Mitogen-Activated Protein Kinase Kinases - genetics
Mitogen-Activated Protein Kinase Kinases - metabolism
Mitogen-Activated Protein Kinases - genetics
Mitogen-Activated Protein Kinases - metabolism
Mutation - genetics
Neuronal Plasticity - physiology
Phosphoproteins - genetics
Phosphoproteins - metabolism
Phosphorylation - drug effects
Protein Biosynthesis - physiology
Rats
Ribosomal Protein S6 - genetics
Ribosomal Protein S6 - metabolism
Synapses - drug effects
Synapses - enzymology
Synapses - ultrastructure
title Translational Control by MAPK Signaling in Long-Term Synaptic Plasticity and Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20Control%20by%20MAPK%20Signaling%20in%20Long-Term%20Synaptic%20Plasticity%20and%20Memory&rft.jtitle=Cell&rft.au=Kelleher,%20Raymond%20J&rft.date=2004-02-06&rft.volume=116&rft.issue=3&rft.spage=467&rft.epage=479&rft.pages=467-479&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/S0092-8674(04)00115-1&rft_dat=%3Cproquest_cross%3E17918742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17918742&rft_id=info:pmid/15016380&rft_els_id=S0092867404001151&rfr_iscdi=true