The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain‐of‐function allele PDR1‐12

The spontaneous acquisition of resistance to a variety of unrelated cytotoxic compounds has important implications in medical treatment of infectious diseases and anticancer therapy. In the yeast Saccharomyces cerevisiae this phenomenon is caused by overexpression of membrane efflux pumps and is cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of biochemistry 2004-03, Vol.271 (6), p.1145-1152
Hauptverfasser: Wehrschütz‐Sigl, Eva, Jungwirth, Helmut, Bergler, Helmut, Högenauer, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1152
container_issue 6
container_start_page 1145
container_title European journal of biochemistry
container_volume 271
creator Wehrschütz‐Sigl, Eva
Jungwirth, Helmut
Bergler, Helmut
Högenauer, Gregor
description The spontaneous acquisition of resistance to a variety of unrelated cytotoxic compounds has important implications in medical treatment of infectious diseases and anticancer therapy. In the yeast Saccharomyces cerevisiae this phenomenon is caused by overexpression of membrane efflux pumps and is called pleiotropic drug resistance. We have found that allelic forms of the genes for the transcription activators Pdr1p and Pdr3p, designated PDR1‐12 and PDR3‐33, respectively, mediate resistance to diazaborine. Here we demonstrate that the transporters Pdr5p and Snq2p are involved in diazaborine detoxification. We report that in the PDR3‐33 mutant diazaborine resistance is exerted mainly via overexpression of the PDR5 and SNQ2 genes, while in the PDR1‐12 mutant, additional genes, i.e. the Yap1p target genes FLR1 and YCF1, are also involved in diazaborine detoxification. In addition, we show that in the presence of cycloheximide or diazaborine PDR5 can be activated by additional transcription factors beside Pdr1p and Pdr3p.
doi_str_mv 10.1111/j.1432-1033.2004.04018.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71737944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17941279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5138-94707518e4e30da48702a206d824c22c28a28ce1eab5e9266052a96b166092793</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EokPhFZBX7JKe4zgXb5CgN5AqUdGytjzOCWSUsVM7ES0rVqx5Rp4EZ2YES_DCPra_81vyxxhHyDGNk02OshAZQlHkAkDmIAGb_P4RW_25eMxWACgzocrqiD2LcQMAlarqp-wISwCFqlixH7dfiE_BuDj6MFGI_LoN5ciNa_mNuxMj31Lbm4l4mr-ZtQ-9Ix4o9nEyztIONIH47FoKfEpp1rsp-IH7brf9bHr36_tP36Wpm52deu-4GQYaiF-ffcR0jOI5e9KZIdKLw3rMPl2c356-y64-XL4_fXOV2RKLJlOyhrrEhiQV0BrZ1CCMgKpthLRCWNEY0VhCMuuSlKgqKIVR1RpTpUStimP2ap87Bn83U5z0to-WhsE48nPUNdZFraT8J4iJwn1iswdt8DEG6vQY-q0JDxpBL7L0Ri9O9OJEL7L0Tpa-T60vD2_M6_TLfxsPdhLweg987Qd6-O9gfXH-9mYpi98AHKTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17941279</pqid></control><display><type>article</type><title>The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain‐of‐function allele PDR1‐12</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Wehrschütz‐Sigl, Eva ; Jungwirth, Helmut ; Bergler, Helmut ; Högenauer, Gregor</creator><creatorcontrib>Wehrschütz‐Sigl, Eva ; Jungwirth, Helmut ; Bergler, Helmut ; Högenauer, Gregor</creatorcontrib><description>The spontaneous acquisition of resistance to a variety of unrelated cytotoxic compounds has important implications in medical treatment of infectious diseases and anticancer therapy. In the yeast Saccharomyces cerevisiae this phenomenon is caused by overexpression of membrane efflux pumps and is called pleiotropic drug resistance. We have found that allelic forms of the genes for the transcription activators Pdr1p and Pdr3p, designated PDR1‐12 and PDR3‐33, respectively, mediate resistance to diazaborine. Here we demonstrate that the transporters Pdr5p and Snq2p are involved in diazaborine detoxification. We report that in the PDR3‐33 mutant diazaborine resistance is exerted mainly via overexpression of the PDR5 and SNQ2 genes, while in the PDR1‐12 mutant, additional genes, i.e. the Yap1p target genes FLR1 and YCF1, are also involved in diazaborine detoxification. In addition, we show that in the presence of cycloheximide or diazaborine PDR5 can be activated by additional transcription factors beside Pdr1p and Pdr3p.</description><identifier>ISSN: 0014-2956</identifier><identifier>EISSN: 1432-1033</identifier><identifier>DOI: 10.1111/j.1432-1033.2004.04018.x</identifier><identifier>PMID: 15009193</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>ABC transporters ; Adaptor Proteins, Signal Transducing ; Alleles ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Aza Compounds - metabolism ; Aza Compounds - pharmacology ; Blotting, Northern ; Boron Compounds - metabolism ; Boron Compounds - pharmacology ; Carrier Proteins - metabolism ; Cycloheximide - pharmacology ; diazaborine ; Drug Resistance ; Membrane Transport Proteins ; Organic Anion Transporters ; RNA, Messenger - biosynthesis ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Activation ; transcriptional regulation</subject><ispartof>European journal of biochemistry, 2004-03, Vol.271 (6), p.1145-1152</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5138-94707518e4e30da48702a206d824c22c28a28ce1eab5e9266052a96b166092793</citedby><cites>FETCH-LOGICAL-c5138-94707518e4e30da48702a206d824c22c28a28ce1eab5e9266052a96b166092793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1432-1033.2004.04018.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1432-1033.2004.04018.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15009193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wehrschütz‐Sigl, Eva</creatorcontrib><creatorcontrib>Jungwirth, Helmut</creatorcontrib><creatorcontrib>Bergler, Helmut</creatorcontrib><creatorcontrib>Högenauer, Gregor</creatorcontrib><title>The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain‐of‐function allele PDR1‐12</title><title>European journal of biochemistry</title><addtitle>Eur J Biochem</addtitle><description>The spontaneous acquisition of resistance to a variety of unrelated cytotoxic compounds has important implications in medical treatment of infectious diseases and anticancer therapy. In the yeast Saccharomyces cerevisiae this phenomenon is caused by overexpression of membrane efflux pumps and is called pleiotropic drug resistance. We have found that allelic forms of the genes for the transcription activators Pdr1p and Pdr3p, designated PDR1‐12 and PDR3‐33, respectively, mediate resistance to diazaborine. Here we demonstrate that the transporters Pdr5p and Snq2p are involved in diazaborine detoxification. We report that in the PDR3‐33 mutant diazaborine resistance is exerted mainly via overexpression of the PDR5 and SNQ2 genes, while in the PDR1‐12 mutant, additional genes, i.e. the Yap1p target genes FLR1 and YCF1, are also involved in diazaborine detoxification. In addition, we show that in the presence of cycloheximide or diazaborine PDR5 can be activated by additional transcription factors beside Pdr1p and Pdr3p.</description><subject>ABC transporters</subject><subject>Adaptor Proteins, Signal Transducing</subject><subject>Alleles</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Aza Compounds - metabolism</subject><subject>Aza Compounds - pharmacology</subject><subject>Blotting, Northern</subject><subject>Boron Compounds - metabolism</subject><subject>Boron Compounds - pharmacology</subject><subject>Carrier Proteins - metabolism</subject><subject>Cycloheximide - pharmacology</subject><subject>diazaborine</subject><subject>Drug Resistance</subject><subject>Membrane Transport Proteins</subject><subject>Organic Anion Transporters</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>transcriptional regulation</subject><issn>0014-2956</issn><issn>1432-1033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi0EokPhFZBX7JKe4zgXb5CgN5AqUdGytjzOCWSUsVM7ES0rVqx5Rp4EZ2YES_DCPra_81vyxxhHyDGNk02OshAZQlHkAkDmIAGb_P4RW_25eMxWACgzocrqiD2LcQMAlarqp-wISwCFqlixH7dfiE_BuDj6MFGI_LoN5ciNa_mNuxMj31Lbm4l4mr-ZtQ-9Ix4o9nEyztIONIH47FoKfEpp1rsp-IH7brf9bHr36_tP36Wpm52deu-4GQYaiF-ffcR0jOI5e9KZIdKLw3rMPl2c356-y64-XL4_fXOV2RKLJlOyhrrEhiQV0BrZ1CCMgKpthLRCWNEY0VhCMuuSlKgqKIVR1RpTpUStimP2ap87Bn83U5z0to-WhsE48nPUNdZFraT8J4iJwn1iswdt8DEG6vQY-q0JDxpBL7L0Ri9O9OJEL7L0Tpa-T60vD2_M6_TLfxsPdhLweg987Qd6-O9gfXH-9mYpi98AHKTA</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Wehrschütz‐Sigl, Eva</creator><creator>Jungwirth, Helmut</creator><creator>Bergler, Helmut</creator><creator>Högenauer, Gregor</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200403</creationdate><title>The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain‐of‐function allele PDR1‐12</title><author>Wehrschütz‐Sigl, Eva ; Jungwirth, Helmut ; Bergler, Helmut ; Högenauer, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5138-94707518e4e30da48702a206d824c22c28a28ce1eab5e9266052a96b166092793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ABC transporters</topic><topic>Adaptor Proteins, Signal Transducing</topic><topic>Alleles</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Aza Compounds - metabolism</topic><topic>Aza Compounds - pharmacology</topic><topic>Blotting, Northern</topic><topic>Boron Compounds - metabolism</topic><topic>Boron Compounds - pharmacology</topic><topic>Carrier Proteins - metabolism</topic><topic>Cycloheximide - pharmacology</topic><topic>diazaborine</topic><topic>Drug Resistance</topic><topic>Membrane Transport Proteins</topic><topic>Organic Anion Transporters</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehrschütz‐Sigl, Eva</creatorcontrib><creatorcontrib>Jungwirth, Helmut</creatorcontrib><creatorcontrib>Bergler, Helmut</creatorcontrib><creatorcontrib>Högenauer, Gregor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wehrschütz‐Sigl, Eva</au><au>Jungwirth, Helmut</au><au>Bergler, Helmut</au><au>Högenauer, Gregor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain‐of‐function allele PDR1‐12</atitle><jtitle>European journal of biochemistry</jtitle><addtitle>Eur J Biochem</addtitle><date>2004-03</date><risdate>2004</risdate><volume>271</volume><issue>6</issue><spage>1145</spage><epage>1152</epage><pages>1145-1152</pages><issn>0014-2956</issn><eissn>1432-1033</eissn><abstract>The spontaneous acquisition of resistance to a variety of unrelated cytotoxic compounds has important implications in medical treatment of infectious diseases and anticancer therapy. In the yeast Saccharomyces cerevisiae this phenomenon is caused by overexpression of membrane efflux pumps and is called pleiotropic drug resistance. We have found that allelic forms of the genes for the transcription activators Pdr1p and Pdr3p, designated PDR1‐12 and PDR3‐33, respectively, mediate resistance to diazaborine. Here we demonstrate that the transporters Pdr5p and Snq2p are involved in diazaborine detoxification. We report that in the PDR3‐33 mutant diazaborine resistance is exerted mainly via overexpression of the PDR5 and SNQ2 genes, while in the PDR1‐12 mutant, additional genes, i.e. the Yap1p target genes FLR1 and YCF1, are also involved in diazaborine detoxification. In addition, we show that in the presence of cycloheximide or diazaborine PDR5 can be activated by additional transcription factors beside Pdr1p and Pdr3p.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15009193</pmid><doi>10.1111/j.1432-1033.2004.04018.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2956
ispartof European journal of biochemistry, 2004-03, Vol.271 (6), p.1145-1152
issn 0014-2956
1432-1033
language eng
recordid cdi_proquest_miscellaneous_71737944
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects ABC transporters
Adaptor Proteins, Signal Transducing
Alleles
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Aza Compounds - metabolism
Aza Compounds - pharmacology
Blotting, Northern
Boron Compounds - metabolism
Boron Compounds - pharmacology
Carrier Proteins - metabolism
Cycloheximide - pharmacology
diazaborine
Drug Resistance
Membrane Transport Proteins
Organic Anion Transporters
RNA, Messenger - biosynthesis
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation
transcriptional regulation
title The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain‐of‐function allele PDR1‐12
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transporters%20Pdr5p%20and%20Snq2p%20mediate%20diazaborine%20resistance%20and%20are%20under%20the%20control%20of%20the%20gain%E2%80%90of%E2%80%90function%20allele%20PDR1%E2%80%9012&rft.jtitle=European%20journal%20of%20biochemistry&rft.au=Wehrsch%C3%BCtz%E2%80%90Sigl,%20Eva&rft.date=2004-03&rft.volume=271&rft.issue=6&rft.spage=1145&rft.epage=1152&rft.pages=1145-1152&rft.issn=0014-2956&rft.eissn=1432-1033&rft_id=info:doi/10.1111/j.1432-1033.2004.04018.x&rft_dat=%3Cproquest_cross%3E17941279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17941279&rft_id=info:pmid/15009193&rfr_iscdi=true