Cardiovascular Fitness, Cortical Plasticity, and Aging

Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-03, Vol.101 (9), p.3316-3321
Hauptverfasser: Colcombe, Stanley J., Kramer, Arthur F., Erickson, Kirk I., Scalf, Paige, McAuley, Edward, Cohen, Neal J., Webb, Andrew, Jerome, Gerry J., Marquez, David X., Elavsky, Steriani, Greenough, William T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3321
container_issue 9
container_start_page 3316
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Colcombe, Stanley J.
Kramer, Arthur F.
Erickson, Kirk I.
Scalf, Paige
McAuley, Edward
Cohen, Neal J.
Webb, Andrew
Jerome, Gerry J.
Marquez, David X.
Elavsky, Steriani
Greenough, William T.
description Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections, and the development of new neurons. The end result is a brain that is more efficient, plastic, and adaptive, which translates into better performance in aging animals. Here, in two separate experiments, we demonstrate for the first time to our knowledge, in humans that increases in cardiovascular fitness results in increased functioning of key aspects of the attentional network of the brain during a cognitively challenging task. Specifically, highly fit (Study 1) or aerobically trained (Study 2) persons show greater task-related activity in regions of the prefrontal and parietal cortices that are involved in spatial selection and inhibitory functioning, when compared with low-fit (Study 1) or nonaerobic control (Study 2) participants. Additionally, in both studies there exist groupwise differences in activation of the anterior cingulate cortex, which is thought to monitor for conflict in the attentional system, and signal the need for adaptation in the attentional network. These data suggest that increased cardiovascular fitness can affect improvements in the plasticity of the aging human brain, and may serve to reduce both biological and cognitive senescence in humans.
doi_str_mv 10.1073/pnas.0400266101
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71737808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3371199</jstor_id><sourcerecordid>3371199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-65b2b0a68c953001bf866498ff81e8e4773c1bba28730521cef1ee7c7b9e02623</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modls9exEZPNRLp30vmcmPg4eyWBUKetBzyGQza5bszJpkiv3vzbBLt4rgKSHv8_3yffkS8grhEkGwq91g0iU0AJRzBHxCFggKa94oeEoW5VnUsqHNCTlNaQMAqpXwnJxgo4SkUi4IX5q48uOdSXYKJlY3Pg8upYtqOcbsrQnV12BSufl8f1GZYVVdr_2wfkGe9SYk9_JwnpHvNx--LT_Vt18-fl5e39a2VZBr3na0A8OlVS0DwK6XvGSTfS_RSdcIwSx2naFSMGgpWtejc8KKTrmyEmVn5P3edzd1W7eybsjRBL2LfmvivR6N139OBv9Dr8c7zQSjbVv05wd9HH9OLmW99cm6EMzgxilpgYIJCfK_IKoShzaz49u_wM04xaF8gqaAjHOuZuhqD9k4phRd_5AYQc_F6bk4fSyuKN48XvTIH5oqwLsDMCuPdqiVZgy57qcQsvuVH1n9myzA6z2wSXmMDwRjAlEp9hu-qLQe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201366695</pqid></control><display><type>article</type><title>Cardiovascular Fitness, Cortical Plasticity, and Aging</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Colcombe, Stanley J. ; Kramer, Arthur F. ; Erickson, Kirk I. ; Scalf, Paige ; McAuley, Edward ; Cohen, Neal J. ; Webb, Andrew ; Jerome, Gerry J. ; Marquez, David X. ; Elavsky, Steriani ; Greenough, William T.</creator><creatorcontrib>Colcombe, Stanley J. ; Kramer, Arthur F. ; Erickson, Kirk I. ; Scalf, Paige ; McAuley, Edward ; Cohen, Neal J. ; Webb, Andrew ; Jerome, Gerry J. ; Marquez, David X. ; Elavsky, Steriani ; Greenough, William T.</creatorcontrib><description>Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections, and the development of new neurons. The end result is a brain that is more efficient, plastic, and adaptive, which translates into better performance in aging animals. Here, in two separate experiments, we demonstrate for the first time to our knowledge, in humans that increases in cardiovascular fitness results in increased functioning of key aspects of the attentional network of the brain during a cognitively challenging task. Specifically, highly fit (Study 1) or aerobically trained (Study 2) persons show greater task-related activity in regions of the prefrontal and parietal cortices that are involved in spatial selection and inhibitory functioning, when compared with low-fit (Study 1) or nonaerobic control (Study 2) participants. Additionally, in both studies there exist groupwise differences in activation of the anterior cingulate cortex, which is thought to monitor for conflict in the attentional system, and signal the need for adaptation in the attentional network. These data suggest that increased cardiovascular fitness can affect improvements in the plasticity of the aging human brain, and may serve to reduce both biological and cognitive senescence in humans.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0400266101</identifier><identifier>PMID: 14978288</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Age ; Aged ; Aging ; Aging - physiology ; Animal models ; Behavioral neuroscience ; Brain ; Brain - growth &amp; development ; Brain - physiology ; Cardiovascular System - growth &amp; development ; Cerebral Cortex - growth &amp; development ; Cerebral Cortex - physiology ; Cognition ; Cognition &amp; reasoning ; Cross-Sectional Studies ; Demography ; Exercise ; Exercise - physiology ; Human aging ; Humans ; Hypertension ; Magnetic resonance imaging ; Neuronal Plasticity - physiology ; Neurons - physiology ; Older adults ; Physical Fitness ; Psychology ; Social Sciences ; Synapses - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-03, Vol.101 (9), p.3316-3321</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 2, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-65b2b0a68c953001bf866498ff81e8e4773c1bba28730521cef1ee7c7b9e02623</citedby><cites>FETCH-LOGICAL-c590t-65b2b0a68c953001bf866498ff81e8e4773c1bba28730521cef1ee7c7b9e02623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3371199$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3371199$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14978288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colcombe, Stanley J.</creatorcontrib><creatorcontrib>Kramer, Arthur F.</creatorcontrib><creatorcontrib>Erickson, Kirk I.</creatorcontrib><creatorcontrib>Scalf, Paige</creatorcontrib><creatorcontrib>McAuley, Edward</creatorcontrib><creatorcontrib>Cohen, Neal J.</creatorcontrib><creatorcontrib>Webb, Andrew</creatorcontrib><creatorcontrib>Jerome, Gerry J.</creatorcontrib><creatorcontrib>Marquez, David X.</creatorcontrib><creatorcontrib>Elavsky, Steriani</creatorcontrib><creatorcontrib>Greenough, William T.</creatorcontrib><title>Cardiovascular Fitness, Cortical Plasticity, and Aging</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections, and the development of new neurons. The end result is a brain that is more efficient, plastic, and adaptive, which translates into better performance in aging animals. Here, in two separate experiments, we demonstrate for the first time to our knowledge, in humans that increases in cardiovascular fitness results in increased functioning of key aspects of the attentional network of the brain during a cognitively challenging task. Specifically, highly fit (Study 1) or aerobically trained (Study 2) persons show greater task-related activity in regions of the prefrontal and parietal cortices that are involved in spatial selection and inhibitory functioning, when compared with low-fit (Study 1) or nonaerobic control (Study 2) participants. Additionally, in both studies there exist groupwise differences in activation of the anterior cingulate cortex, which is thought to monitor for conflict in the attentional system, and signal the need for adaptation in the attentional network. These data suggest that increased cardiovascular fitness can affect improvements in the plasticity of the aging human brain, and may serve to reduce both biological and cognitive senescence in humans.</description><subject>Age</subject><subject>Aged</subject><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animal models</subject><subject>Behavioral neuroscience</subject><subject>Brain</subject><subject>Brain - growth &amp; development</subject><subject>Brain - physiology</subject><subject>Cardiovascular System - growth &amp; development</subject><subject>Cerebral Cortex - growth &amp; development</subject><subject>Cerebral Cortex - physiology</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cross-Sectional Studies</subject><subject>Demography</subject><subject>Exercise</subject><subject>Exercise - physiology</subject><subject>Human aging</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Magnetic resonance imaging</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Older adults</subject><subject>Physical Fitness</subject><subject>Psychology</subject><subject>Social Sciences</subject><subject>Synapses - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modls9exEZPNRLp30vmcmPg4eyWBUKetBzyGQza5bszJpkiv3vzbBLt4rgKSHv8_3yffkS8grhEkGwq91g0iU0AJRzBHxCFggKa94oeEoW5VnUsqHNCTlNaQMAqpXwnJxgo4SkUi4IX5q48uOdSXYKJlY3Pg8upYtqOcbsrQnV12BSufl8f1GZYVVdr_2wfkGe9SYk9_JwnpHvNx--LT_Vt18-fl5e39a2VZBr3na0A8OlVS0DwK6XvGSTfS_RSdcIwSx2naFSMGgpWtejc8KKTrmyEmVn5P3edzd1W7eybsjRBL2LfmvivR6N139OBv9Dr8c7zQSjbVv05wd9HH9OLmW99cm6EMzgxilpgYIJCfK_IKoShzaz49u_wM04xaF8gqaAjHOuZuhqD9k4phRd_5AYQc_F6bk4fSyuKN48XvTIH5oqwLsDMCuPdqiVZgy57qcQsvuVH1n9myzA6z2wSXmMDwRjAlEp9hu-qLQe</recordid><startdate>20040302</startdate><enddate>20040302</enddate><creator>Colcombe, Stanley J.</creator><creator>Kramer, Arthur F.</creator><creator>Erickson, Kirk I.</creator><creator>Scalf, Paige</creator><creator>McAuley, Edward</creator><creator>Cohen, Neal J.</creator><creator>Webb, Andrew</creator><creator>Jerome, Gerry J.</creator><creator>Marquez, David X.</creator><creator>Elavsky, Steriani</creator><creator>Greenough, William T.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040302</creationdate><title>Cardiovascular Fitness, Cortical Plasticity, and Aging</title><author>Colcombe, Stanley J. ; Kramer, Arthur F. ; Erickson, Kirk I. ; Scalf, Paige ; McAuley, Edward ; Cohen, Neal J. ; Webb, Andrew ; Jerome, Gerry J. ; Marquez, David X. ; Elavsky, Steriani ; Greenough, William T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-65b2b0a68c953001bf866498ff81e8e4773c1bba28730521cef1ee7c7b9e02623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Age</topic><topic>Aged</topic><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animal models</topic><topic>Behavioral neuroscience</topic><topic>Brain</topic><topic>Brain - growth &amp; development</topic><topic>Brain - physiology</topic><topic>Cardiovascular System - growth &amp; development</topic><topic>Cerebral Cortex - growth &amp; development</topic><topic>Cerebral Cortex - physiology</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cross-Sectional Studies</topic><topic>Demography</topic><topic>Exercise</topic><topic>Exercise - physiology</topic><topic>Human aging</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Magnetic resonance imaging</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Older adults</topic><topic>Physical Fitness</topic><topic>Psychology</topic><topic>Social Sciences</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colcombe, Stanley J.</creatorcontrib><creatorcontrib>Kramer, Arthur F.</creatorcontrib><creatorcontrib>Erickson, Kirk I.</creatorcontrib><creatorcontrib>Scalf, Paige</creatorcontrib><creatorcontrib>McAuley, Edward</creatorcontrib><creatorcontrib>Cohen, Neal J.</creatorcontrib><creatorcontrib>Webb, Andrew</creatorcontrib><creatorcontrib>Jerome, Gerry J.</creatorcontrib><creatorcontrib>Marquez, David X.</creatorcontrib><creatorcontrib>Elavsky, Steriani</creatorcontrib><creatorcontrib>Greenough, William T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colcombe, Stanley J.</au><au>Kramer, Arthur F.</au><au>Erickson, Kirk I.</au><au>Scalf, Paige</au><au>McAuley, Edward</au><au>Cohen, Neal J.</au><au>Webb, Andrew</au><au>Jerome, Gerry J.</au><au>Marquez, David X.</au><au>Elavsky, Steriani</au><au>Greenough, William T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiovascular Fitness, Cortical Plasticity, and Aging</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-03-02</date><risdate>2004</risdate><volume>101</volume><issue>9</issue><spage>3316</spage><epage>3321</epage><pages>3316-3321</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections, and the development of new neurons. The end result is a brain that is more efficient, plastic, and adaptive, which translates into better performance in aging animals. Here, in two separate experiments, we demonstrate for the first time to our knowledge, in humans that increases in cardiovascular fitness results in increased functioning of key aspects of the attentional network of the brain during a cognitively challenging task. Specifically, highly fit (Study 1) or aerobically trained (Study 2) persons show greater task-related activity in regions of the prefrontal and parietal cortices that are involved in spatial selection and inhibitory functioning, when compared with low-fit (Study 1) or nonaerobic control (Study 2) participants. Additionally, in both studies there exist groupwise differences in activation of the anterior cingulate cortex, which is thought to monitor for conflict in the attentional system, and signal the need for adaptation in the attentional network. These data suggest that increased cardiovascular fitness can affect improvements in the plasticity of the aging human brain, and may serve to reduce both biological and cognitive senescence in humans.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14978288</pmid><doi>10.1073/pnas.0400266101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-03, Vol.101 (9), p.3316-3321
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_71737808
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Age
Aged
Aging
Aging - physiology
Animal models
Behavioral neuroscience
Brain
Brain - growth & development
Brain - physiology
Cardiovascular System - growth & development
Cerebral Cortex - growth & development
Cerebral Cortex - physiology
Cognition
Cognition & reasoning
Cross-Sectional Studies
Demography
Exercise
Exercise - physiology
Human aging
Humans
Hypertension
Magnetic resonance imaging
Neuronal Plasticity - physiology
Neurons - physiology
Older adults
Physical Fitness
Psychology
Social Sciences
Synapses - physiology
title Cardiovascular Fitness, Cortical Plasticity, and Aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiovascular%20Fitness,%20Cortical%20Plasticity,%20and%20Aging&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Colcombe,%20Stanley%20J.&rft.date=2004-03-02&rft.volume=101&rft.issue=9&rft.spage=3316&rft.epage=3321&rft.pages=3316-3321&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0400266101&rft_dat=%3Cjstor_proqu%3E3371199%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201366695&rft_id=info:pmid/14978288&rft_jstor_id=3371199&rfr_iscdi=true