Automatic removal of eye movement and blink artifacts from EEG data using blind component separation

Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychophysiology 2004-03, Vol.41 (2), p.313-325
Hauptverfasser: Joyce, Carrie A., Gorodnitsky, Irina F., Kutas, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 325
container_issue 2
container_start_page 313
container_title Psychophysiology
container_volume 41
creator Joyce, Carrie A.
Gorodnitsky, Irina F.
Kutas, Marta
description Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.
doi_str_mv 10.1111/j.1469-8986.2003.00141.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71737628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71737628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPCX0DewC6pb-zEyYJFWw3TShVUogjBxnL8QJ4m8dRO6My_r9MZFXbgjV_fufY9ByEMJIc0Ttc5sKrJ6qau8oIQmhMCDPLtC7R4vniJFoSwOis5L47QcYxrQkgDRfEaHUFJaNE0fIH02TT6Xo5O4WB6_1t22FtsdganjenNMGI5aNx2brjDMozOSjVGbIPv8XK5wlqOEk_RDb-eGI2V7zd-mHXRbGRIlf3wBr2ysovm7WE-Qd8-LW8vLrPrL6uri7PrTJU1gYySqipbYKmZtmoVWFlYqqwC02pVMs0ZhdKkQ1Voo0mtrWGMUwapEyCK0hP0YV93E_z9ZOIoeheV6To5GD9FwYFTXhX1P0HgAIyWkMB6D6rgYwzGik1wvQw7AUTMUYi1mB0Xs-NijkI8RSG2Sfru8MbU9kb_ER68T8D7AyCjkp0NclAu_sVVnNUNS9zHPffgOrP77w-Im68_btIq6bO93sXRbJ_1MtyJKvlRiu-fV4KUcHten_8UlD4CBl60Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17114351</pqid></control><display><type>article</type><title>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Joyce, Carrie A. ; Gorodnitsky, Irina F. ; Kutas, Marta</creator><creatorcontrib>Joyce, Carrie A. ; Gorodnitsky, Irina F. ; Kutas, Marta</creatorcontrib><description>Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.</description><identifier>ISSN: 0048-5772</identifier><identifier>EISSN: 1469-8986</identifier><identifier>EISSN: 1540-5958</identifier><identifier>DOI: 10.1111/j.1469-8986.2003.00141.x</identifier><identifier>PMID: 15032997</identifier><identifier>CODEN: PSPHAF</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing</publisher><subject>Algorithms ; Automated ; Biological and medical sciences ; Blind source separation ; Blinking - physiology ; Computer processing ; Data Interpretation, Statistical ; Electrodes ; Electroencephalogram ; Electroencephalography ; Electrooculogram ; Electrooculography ; Eye Movements - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Independent component analysis ; Methodology. Experimentation ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology</subject><ispartof>Psychophysiology, 2004-03, Vol.41 (2), p.313-325</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</citedby><cites>FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1469-8986.2003.00141.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1469-8986.2003.00141.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15674894$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15032997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joyce, Carrie A.</creatorcontrib><creatorcontrib>Gorodnitsky, Irina F.</creatorcontrib><creatorcontrib>Kutas, Marta</creatorcontrib><title>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</title><title>Psychophysiology</title><addtitle>Psychophysiology</addtitle><description>Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.</description><subject>Algorithms</subject><subject>Automated</subject><subject>Biological and medical sciences</subject><subject>Blind source separation</subject><subject>Blinking - physiology</subject><subject>Computer processing</subject><subject>Data Interpretation, Statistical</subject><subject>Electrodes</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>Electrooculogram</subject><subject>Electrooculography</subject><subject>Eye Movements - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Methodology. Experimentation</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><issn>0048-5772</issn><issn>1469-8986</issn><issn>1540-5958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EotPCX0DewC6pb-zEyYJFWw3TShVUogjBxnL8QJ4m8dRO6My_r9MZFXbgjV_fufY9ByEMJIc0Ttc5sKrJ6qau8oIQmhMCDPLtC7R4vniJFoSwOis5L47QcYxrQkgDRfEaHUFJaNE0fIH02TT6Xo5O4WB6_1t22FtsdganjenNMGI5aNx2brjDMozOSjVGbIPv8XK5wlqOEk_RDb-eGI2V7zd-mHXRbGRIlf3wBr2ysovm7WE-Qd8-LW8vLrPrL6uri7PrTJU1gYySqipbYKmZtmoVWFlYqqwC02pVMs0ZhdKkQ1Voo0mtrWGMUwapEyCK0hP0YV93E_z9ZOIoeheV6To5GD9FwYFTXhX1P0HgAIyWkMB6D6rgYwzGik1wvQw7AUTMUYi1mB0Xs-NijkI8RSG2Sfru8MbU9kb_ER68T8D7AyCjkp0NclAu_sVVnNUNS9zHPffgOrP77w-Im68_btIq6bO93sXRbJ_1MtyJKvlRiu-fV4KUcHten_8UlD4CBl60Bw</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Joyce, Carrie A.</creator><creator>Gorodnitsky, Irina F.</creator><creator>Kutas, Marta</creator><general>Blackwell Publishing</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200403</creationdate><title>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</title><author>Joyce, Carrie A. ; Gorodnitsky, Irina F. ; Kutas, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Automated</topic><topic>Biological and medical sciences</topic><topic>Blind source separation</topic><topic>Blinking - physiology</topic><topic>Computer processing</topic><topic>Data Interpretation, Statistical</topic><topic>Electrodes</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>Electrooculogram</topic><topic>Electrooculography</topic><topic>Eye Movements - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Methodology. Experimentation</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joyce, Carrie A.</creatorcontrib><creatorcontrib>Gorodnitsky, Irina F.</creatorcontrib><creatorcontrib>Kutas, Marta</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Psychophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joyce, Carrie A.</au><au>Gorodnitsky, Irina F.</au><au>Kutas, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</atitle><jtitle>Psychophysiology</jtitle><addtitle>Psychophysiology</addtitle><date>2004-03</date><risdate>2004</risdate><volume>41</volume><issue>2</issue><spage>313</spage><epage>325</epage><pages>313-325</pages><issn>0048-5772</issn><eissn>1469-8986</eissn><eissn>1540-5958</eissn><coden>PSPHAF</coden><abstract>Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing</pub><pmid>15032997</pmid><doi>10.1111/j.1469-8986.2003.00141.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-5772
ispartof Psychophysiology, 2004-03, Vol.41 (2), p.313-325
issn 0048-5772
1469-8986
1540-5958
language eng
recordid cdi_proquest_miscellaneous_71737628
source MEDLINE; Wiley Online Library All Journals
subjects Algorithms
Automated
Biological and medical sciences
Blind source separation
Blinking - physiology
Computer processing
Data Interpretation, Statistical
Electrodes
Electroencephalogram
Electroencephalography
Electrooculogram
Electrooculography
Eye Movements - physiology
Fundamental and applied biological sciences. Psychology
Humans
Independent component analysis
Methodology. Experimentation
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
title Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20removal%20of%20eye%20movement%20and%20blink%20artifacts%20from%20EEG%20data%20using%20blind%20component%20separation&rft.jtitle=Psychophysiology&rft.au=Joyce,%20Carrie%20A.&rft.date=2004-03&rft.volume=41&rft.issue=2&rft.spage=313&rft.epage=325&rft.pages=313-325&rft.issn=0048-5772&rft.eissn=1469-8986&rft.coden=PSPHAF&rft_id=info:doi/10.1111/j.1469-8986.2003.00141.x&rft_dat=%3Cproquest_cross%3E71737628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17114351&rft_id=info:pmid/15032997&rfr_iscdi=true