Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limi...
Gespeichert in:
Veröffentlicht in: | Psychophysiology 2004-03, Vol.41 (2), p.313-325 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 325 |
---|---|
container_issue | 2 |
container_start_page | 313 |
container_title | Psychophysiology |
container_volume | 41 |
creator | Joyce, Carrie A. Gorodnitsky, Irina F. Kutas, Marta |
description | Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG. |
doi_str_mv | 10.1111/j.1469-8986.2003.00141.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71737628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71737628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPCX0DewC6pb-zEyYJFWw3TShVUogjBxnL8QJ4m8dRO6My_r9MZFXbgjV_fufY9ByEMJIc0Ttc5sKrJ6qau8oIQmhMCDPLtC7R4vniJFoSwOis5L47QcYxrQkgDRfEaHUFJaNE0fIH02TT6Xo5O4WB6_1t22FtsdganjenNMGI5aNx2brjDMozOSjVGbIPv8XK5wlqOEk_RDb-eGI2V7zd-mHXRbGRIlf3wBr2ysovm7WE-Qd8-LW8vLrPrL6uri7PrTJU1gYySqipbYKmZtmoVWFlYqqwC02pVMs0ZhdKkQ1Voo0mtrWGMUwapEyCK0hP0YV93E_z9ZOIoeheV6To5GD9FwYFTXhX1P0HgAIyWkMB6D6rgYwzGik1wvQw7AUTMUYi1mB0Xs-NijkI8RSG2Sfru8MbU9kb_ER68T8D7AyCjkp0NclAu_sVVnNUNS9zHPffgOrP77w-Im68_btIq6bO93sXRbJ_1MtyJKvlRiu-fV4KUcHten_8UlD4CBl60Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17114351</pqid></control><display><type>article</type><title>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Joyce, Carrie A. ; Gorodnitsky, Irina F. ; Kutas, Marta</creator><creatorcontrib>Joyce, Carrie A. ; Gorodnitsky, Irina F. ; Kutas, Marta</creatorcontrib><description>Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.</description><identifier>ISSN: 0048-5772</identifier><identifier>EISSN: 1469-8986</identifier><identifier>EISSN: 1540-5958</identifier><identifier>DOI: 10.1111/j.1469-8986.2003.00141.x</identifier><identifier>PMID: 15032997</identifier><identifier>CODEN: PSPHAF</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing</publisher><subject>Algorithms ; Automated ; Biological and medical sciences ; Blind source separation ; Blinking - physiology ; Computer processing ; Data Interpretation, Statistical ; Electrodes ; Electroencephalogram ; Electroencephalography ; Electrooculogram ; Electrooculography ; Eye Movements - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Independent component analysis ; Methodology. Experimentation ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology</subject><ispartof>Psychophysiology, 2004-03, Vol.41 (2), p.313-325</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</citedby><cites>FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1469-8986.2003.00141.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1469-8986.2003.00141.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15674894$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15032997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joyce, Carrie A.</creatorcontrib><creatorcontrib>Gorodnitsky, Irina F.</creatorcontrib><creatorcontrib>Kutas, Marta</creatorcontrib><title>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</title><title>Psychophysiology</title><addtitle>Psychophysiology</addtitle><description>Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.</description><subject>Algorithms</subject><subject>Automated</subject><subject>Biological and medical sciences</subject><subject>Blind source separation</subject><subject>Blinking - physiology</subject><subject>Computer processing</subject><subject>Data Interpretation, Statistical</subject><subject>Electrodes</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>Electrooculogram</subject><subject>Electrooculography</subject><subject>Eye Movements - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Methodology. Experimentation</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><issn>0048-5772</issn><issn>1469-8986</issn><issn>1540-5958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EotPCX0DewC6pb-zEyYJFWw3TShVUogjBxnL8QJ4m8dRO6My_r9MZFXbgjV_fufY9ByEMJIc0Ttc5sKrJ6qau8oIQmhMCDPLtC7R4vniJFoSwOis5L47QcYxrQkgDRfEaHUFJaNE0fIH02TT6Xo5O4WB6_1t22FtsdganjenNMGI5aNx2brjDMozOSjVGbIPv8XK5wlqOEk_RDb-eGI2V7zd-mHXRbGRIlf3wBr2ysovm7WE-Qd8-LW8vLrPrL6uri7PrTJU1gYySqipbYKmZtmoVWFlYqqwC02pVMs0ZhdKkQ1Voo0mtrWGMUwapEyCK0hP0YV93E_z9ZOIoeheV6To5GD9FwYFTXhX1P0HgAIyWkMB6D6rgYwzGik1wvQw7AUTMUYi1mB0Xs-NijkI8RSG2Sfru8MbU9kb_ER68T8D7AyCjkp0NclAu_sVVnNUNS9zHPffgOrP77w-Im68_btIq6bO93sXRbJ_1MtyJKvlRiu-fV4KUcHten_8UlD4CBl60Bw</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Joyce, Carrie A.</creator><creator>Gorodnitsky, Irina F.</creator><creator>Kutas, Marta</creator><general>Blackwell Publishing</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200403</creationdate><title>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</title><author>Joyce, Carrie A. ; Gorodnitsky, Irina F. ; Kutas, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5801-30665b14001b6bc1fa2f3cfc1ebdc54d74315ea2fc2ded08dfe44734199710c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Automated</topic><topic>Biological and medical sciences</topic><topic>Blind source separation</topic><topic>Blinking - physiology</topic><topic>Computer processing</topic><topic>Data Interpretation, Statistical</topic><topic>Electrodes</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>Electrooculogram</topic><topic>Electrooculography</topic><topic>Eye Movements - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Methodology. Experimentation</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joyce, Carrie A.</creatorcontrib><creatorcontrib>Gorodnitsky, Irina F.</creatorcontrib><creatorcontrib>Kutas, Marta</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Psychophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joyce, Carrie A.</au><au>Gorodnitsky, Irina F.</au><au>Kutas, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic removal of eye movement and blink artifacts from EEG data using blind component separation</atitle><jtitle>Psychophysiology</jtitle><addtitle>Psychophysiology</addtitle><date>2004-03</date><risdate>2004</risdate><volume>41</volume><issue>2</issue><spage>313</spage><epage>325</epage><pages>313-325</pages><issn>0048-5772</issn><eissn>1469-8986</eissn><eissn>1540-5958</eissn><coden>PSPHAF</coden><abstract>Signals from eye movements and blinks can be orders of magnitude larger than brain‐generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal‐processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA‐based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing</pub><pmid>15032997</pmid><doi>10.1111/j.1469-8986.2003.00141.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-5772 |
ispartof | Psychophysiology, 2004-03, Vol.41 (2), p.313-325 |
issn | 0048-5772 1469-8986 1540-5958 |
language | eng |
recordid | cdi_proquest_miscellaneous_71737628 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Algorithms Automated Biological and medical sciences Blind source separation Blinking - physiology Computer processing Data Interpretation, Statistical Electrodes Electroencephalogram Electroencephalography Electrooculogram Electrooculography Eye Movements - physiology Fundamental and applied biological sciences. Psychology Humans Independent component analysis Methodology. Experimentation Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics. Statistics. Methodology |
title | Automatic removal of eye movement and blink artifacts from EEG data using blind component separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20removal%20of%20eye%20movement%20and%20blink%20artifacts%20from%20EEG%20data%20using%20blind%20component%20separation&rft.jtitle=Psychophysiology&rft.au=Joyce,%20Carrie%20A.&rft.date=2004-03&rft.volume=41&rft.issue=2&rft.spage=313&rft.epage=325&rft.pages=313-325&rft.issn=0048-5772&rft.eissn=1469-8986&rft.coden=PSPHAF&rft_id=info:doi/10.1111/j.1469-8986.2003.00141.x&rft_dat=%3Cproquest_cross%3E71737628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17114351&rft_id=info:pmid/15032997&rfr_iscdi=true |