Turn‐off, drop‐out: Functional state switching of cadherins
The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep p...
Gespeichert in:
Veröffentlicht in: | Developmental dynamics 2002-05, Vol.224 (1), p.18-29 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | Developmental dynamics |
container_volume | 224 |
creator | Lilien, Jack Balsamo, Janne Arregui, Carlos Xu, Gang |
description | The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/dvdy.10087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71719173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71719173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</originalsourceid><addsrcrecordid>eNp9kLtOwzAYRi0EoqWw8AAoEwMiYOfiCwtCLQWkSiwFiclyfaFGaVzshCobj8Az8iQkpBIbk7_h6PzWAeAYwQsEYXKpPlTTLUp2wBBBRmKICNntdk5jmlI6AAchvMEWwRnaBwOEGM0ogUNwPa99-f355Yw5j5R3627X1VU0rUtZWVeKIgqVqHQUNraSS1u-Rs5EUqil9rYMh2DPiCLoo-07Ak_T2_n4Pp493j2Mb2axTBkiccKYMZkiGZO4_QPJk4zCPJdIQoOxTlOKmVS50IRACbXAiZILQ1WiFwybhKQjcNp719691zpUfGWD1EUhSu3qwAkiqD2UtuBZD0rvQvDa8LW3K-EbjiDvcvEuF__N1cInW2u9WGn1h277tADqgY0tdPOPik-eJy-99AeQ8nav</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71719173</pqid></control><display><type>article</type><title>Turn‐off, drop‐out: Functional state switching of cadherins</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Lilien, Jack ; Balsamo, Janne ; Arregui, Carlos ; Xu, Gang</creator><creatorcontrib>Lilien, Jack ; Balsamo, Janne ; Arregui, Carlos ; Xu, Gang</creatorcontrib><description>The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.10087</identifier><identifier>PMID: 11984870</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; Animals ; beta Catenin ; cadherin ; Cadherins - chemistry ; Cadherins - genetics ; Cadherins - metabolism ; cell–cell adhesion ; Cytoskeletal Proteins - metabolism ; epithelial mesenchymal transformation ; Humans ; Intercellular Junctions - physiology ; Mesoderm - physiology ; Models, Biological ; Molecular Sequence Data ; p120ctn ; Protein Binding ; Protein Structure, Tertiary ; protein tyrosine kinase ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases - metabolism ; PTP1B, protein tyrosine phosphatase ; Trans-Activators - metabolism ; α‐catenin ; β‐catenin</subject><ispartof>Developmental dynamics, 2002-05, Vol.224 (1), p.18-29</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>Copyright 2002 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</citedby><cites>FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.10087$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.10087$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11984870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lilien, Jack</creatorcontrib><creatorcontrib>Balsamo, Janne</creatorcontrib><creatorcontrib>Arregui, Carlos</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><title>Turn‐off, drop‐out: Functional state switching of cadherins</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>beta Catenin</subject><subject>cadherin</subject><subject>Cadherins - chemistry</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>cell–cell adhesion</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>epithelial mesenchymal transformation</subject><subject>Humans</subject><subject>Intercellular Junctions - physiology</subject><subject>Mesoderm - physiology</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>p120ctn</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein tyrosine kinase</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>PTP1B, protein tyrosine phosphatase</subject><subject>Trans-Activators - metabolism</subject><subject>α‐catenin</subject><subject>β‐catenin</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAYRi0EoqWw8AAoEwMiYOfiCwtCLQWkSiwFiclyfaFGaVzshCobj8Az8iQkpBIbk7_h6PzWAeAYwQsEYXKpPlTTLUp2wBBBRmKICNntdk5jmlI6AAchvMEWwRnaBwOEGM0ogUNwPa99-f355Yw5j5R3627X1VU0rUtZWVeKIgqVqHQUNraSS1u-Rs5EUqil9rYMh2DPiCLoo-07Ak_T2_n4Pp493j2Mb2axTBkiccKYMZkiGZO4_QPJk4zCPJdIQoOxTlOKmVS50IRACbXAiZILQ1WiFwybhKQjcNp719691zpUfGWD1EUhSu3qwAkiqD2UtuBZD0rvQvDa8LW3K-EbjiDvcvEuF__N1cInW2u9WGn1h277tADqgY0tdPOPik-eJy-99AeQ8nav</recordid><startdate>200205</startdate><enddate>200205</enddate><creator>Lilien, Jack</creator><creator>Balsamo, Janne</creator><creator>Arregui, Carlos</creator><creator>Xu, Gang</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200205</creationdate><title>Turn‐off, drop‐out: Functional state switching of cadherins</title><author>Lilien, Jack ; Balsamo, Janne ; Arregui, Carlos ; Xu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>beta Catenin</topic><topic>cadherin</topic><topic>Cadherins - chemistry</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>cell–cell adhesion</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>epithelial mesenchymal transformation</topic><topic>Humans</topic><topic>Intercellular Junctions - physiology</topic><topic>Mesoderm - physiology</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>p120ctn</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein tyrosine kinase</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>PTP1B, protein tyrosine phosphatase</topic><topic>Trans-Activators - metabolism</topic><topic>α‐catenin</topic><topic>β‐catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lilien, Jack</creatorcontrib><creatorcontrib>Balsamo, Janne</creatorcontrib><creatorcontrib>Arregui, Carlos</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lilien, Jack</au><au>Balsamo, Janne</au><au>Arregui, Carlos</au><au>Xu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turn‐off, drop‐out: Functional state switching of cadherins</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2002-05</date><risdate>2002</risdate><volume>224</volume><issue>1</issue><spage>18</spage><epage>29</epage><pages>18-29</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11984870</pmid><doi>10.1002/dvdy.10087</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-8388 |
ispartof | Developmental dynamics, 2002-05, Vol.224 (1), p.18-29 |
issn | 1058-8388 1097-0177 |
language | eng |
recordid | cdi_proquest_miscellaneous_71719173 |
source | MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Animals beta Catenin cadherin Cadherins - chemistry Cadherins - genetics Cadherins - metabolism cell–cell adhesion Cytoskeletal Proteins - metabolism epithelial mesenchymal transformation Humans Intercellular Junctions - physiology Mesoderm - physiology Models, Biological Molecular Sequence Data p120ctn Protein Binding Protein Structure, Tertiary protein tyrosine kinase Protein Tyrosine Phosphatase, Non-Receptor Type 1 Protein Tyrosine Phosphatases - metabolism PTP1B, protein tyrosine phosphatase Trans-Activators - metabolism α‐catenin β‐catenin |
title | Turn‐off, drop‐out: Functional state switching of cadherins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turn%E2%80%90off,%20drop%E2%80%90out:%20Functional%20state%20switching%20of%20cadherins&rft.jtitle=Developmental%20dynamics&rft.au=Lilien,%20Jack&rft.date=2002-05&rft.volume=224&rft.issue=1&rft.spage=18&rft.epage=29&rft.pages=18-29&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.10087&rft_dat=%3Cproquest_cross%3E71719173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71719173&rft_id=info:pmid/11984870&rfr_iscdi=true |