Turn‐off, drop‐out: Functional state switching of cadherins

The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental dynamics 2002-05, Vol.224 (1), p.18-29
Hauptverfasser: Lilien, Jack, Balsamo, Janne, Arregui, Carlos, Xu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 18
container_title Developmental dynamics
container_volume 224
creator Lilien, Jack
Balsamo, Janne
Arregui, Carlos
Xu, Gang
description The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc.
doi_str_mv 10.1002/dvdy.10087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71719173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71719173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</originalsourceid><addsrcrecordid>eNp9kLtOwzAYRi0EoqWw8AAoEwMiYOfiCwtCLQWkSiwFiclyfaFGaVzshCobj8Az8iQkpBIbk7_h6PzWAeAYwQsEYXKpPlTTLUp2wBBBRmKICNntdk5jmlI6AAchvMEWwRnaBwOEGM0ogUNwPa99-f355Yw5j5R3627X1VU0rUtZWVeKIgqVqHQUNraSS1u-Rs5EUqil9rYMh2DPiCLoo-07Ak_T2_n4Pp493j2Mb2axTBkiccKYMZkiGZO4_QPJk4zCPJdIQoOxTlOKmVS50IRACbXAiZILQ1WiFwybhKQjcNp719691zpUfGWD1EUhSu3qwAkiqD2UtuBZD0rvQvDa8LW3K-EbjiDvcvEuF__N1cInW2u9WGn1h277tADqgY0tdPOPik-eJy-99AeQ8nav</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71719173</pqid></control><display><type>article</type><title>Turn‐off, drop‐out: Functional state switching of cadherins</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Lilien, Jack ; Balsamo, Janne ; Arregui, Carlos ; Xu, Gang</creator><creatorcontrib>Lilien, Jack ; Balsamo, Janne ; Arregui, Carlos ; Xu, Gang</creatorcontrib><description>The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 1058-8388</identifier><identifier>EISSN: 1097-0177</identifier><identifier>DOI: 10.1002/dvdy.10087</identifier><identifier>PMID: 11984870</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; Animals ; beta Catenin ; cadherin ; Cadherins - chemistry ; Cadherins - genetics ; Cadherins - metabolism ; cell–cell adhesion ; Cytoskeletal Proteins - metabolism ; epithelial mesenchymal transformation ; Humans ; Intercellular Junctions - physiology ; Mesoderm - physiology ; Models, Biological ; Molecular Sequence Data ; p120ctn ; Protein Binding ; Protein Structure, Tertiary ; protein tyrosine kinase ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases - metabolism ; PTP1B, protein tyrosine phosphatase ; Trans-Activators - metabolism ; α‐catenin ; β‐catenin</subject><ispartof>Developmental dynamics, 2002-05, Vol.224 (1), p.18-29</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>Copyright 2002 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</citedby><cites>FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdvdy.10087$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdvdy.10087$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11984870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lilien, Jack</creatorcontrib><creatorcontrib>Balsamo, Janne</creatorcontrib><creatorcontrib>Arregui, Carlos</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><title>Turn‐off, drop‐out: Functional state switching of cadherins</title><title>Developmental dynamics</title><addtitle>Dev Dyn</addtitle><description>The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>beta Catenin</subject><subject>cadherin</subject><subject>Cadherins - chemistry</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>cell–cell adhesion</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>epithelial mesenchymal transformation</subject><subject>Humans</subject><subject>Intercellular Junctions - physiology</subject><subject>Mesoderm - physiology</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>p120ctn</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein tyrosine kinase</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>PTP1B, protein tyrosine phosphatase</subject><subject>Trans-Activators - metabolism</subject><subject>α‐catenin</subject><subject>β‐catenin</subject><issn>1058-8388</issn><issn>1097-0177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtOwzAYRi0EoqWw8AAoEwMiYOfiCwtCLQWkSiwFiclyfaFGaVzshCobj8Az8iQkpBIbk7_h6PzWAeAYwQsEYXKpPlTTLUp2wBBBRmKICNntdk5jmlI6AAchvMEWwRnaBwOEGM0ogUNwPa99-f355Yw5j5R3627X1VU0rUtZWVeKIgqVqHQUNraSS1u-Rs5EUqil9rYMh2DPiCLoo-07Ak_T2_n4Pp493j2Mb2axTBkiccKYMZkiGZO4_QPJk4zCPJdIQoOxTlOKmVS50IRACbXAiZILQ1WiFwybhKQjcNp719691zpUfGWD1EUhSu3qwAkiqD2UtuBZD0rvQvDa8LW3K-EbjiDvcvEuF__N1cInW2u9WGn1h277tADqgY0tdPOPik-eJy-99AeQ8nav</recordid><startdate>200205</startdate><enddate>200205</enddate><creator>Lilien, Jack</creator><creator>Balsamo, Janne</creator><creator>Arregui, Carlos</creator><creator>Xu, Gang</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200205</creationdate><title>Turn‐off, drop‐out: Functional state switching of cadherins</title><author>Lilien, Jack ; Balsamo, Janne ; Arregui, Carlos ; Xu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3917-299ff4d749c686475248055c1c0f66e33869cd5ae770c0ea62dcbf8d2eb96f273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>beta Catenin</topic><topic>cadherin</topic><topic>Cadherins - chemistry</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>cell–cell adhesion</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>epithelial mesenchymal transformation</topic><topic>Humans</topic><topic>Intercellular Junctions - physiology</topic><topic>Mesoderm - physiology</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>p120ctn</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein tyrosine kinase</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>PTP1B, protein tyrosine phosphatase</topic><topic>Trans-Activators - metabolism</topic><topic>α‐catenin</topic><topic>β‐catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lilien, Jack</creatorcontrib><creatorcontrib>Balsamo, Janne</creatorcontrib><creatorcontrib>Arregui, Carlos</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lilien, Jack</au><au>Balsamo, Janne</au><au>Arregui, Carlos</au><au>Xu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turn‐off, drop‐out: Functional state switching of cadherins</atitle><jtitle>Developmental dynamics</jtitle><addtitle>Dev Dyn</addtitle><date>2002-05</date><risdate>2002</risdate><volume>224</volume><issue>1</issue><spage>18</spage><epage>29</epage><pages>18-29</pages><issn>1058-8388</issn><eissn>1097-0177</eissn><abstract>The classic cadherins are a group of calcium dependent, homophilic cell–cell adhesion molecules that drive morphogenetic rearrangements and maintain the integrity of cell groups through the formation of adherens junctions. The formation and maintenance of cadherin‐mediated adhesions is a multistep process and mechanisms have evolved to regulate each step. This suggests that functional state switching plays an important role in development. Among the many challenges ahead is to determine the developmental role that functional state switching plays in tissue morphogenesis and to define the roles of each of the several regulatory interactions that participate in switching. One correlate of the loss of cadherin‐mediated adhesion, the “turn‐off” of cadherin function, is the exit, or “drop‐out” of cells from neural and epithelial layers and their conversion to a motile phenotype. We suggest that epithelial mesenchymal conversions may be initiated by signaling pathways that result in the loss of cadherin function. Tyrosine phosphorylation of β‐catenin is one such mechanism. Enhanced phosphorylation of tyrosine residues on β‐catenin is almost invariably associated with loss of the cadherin‐actin connection concomitant with loss of adhesive function. There are several tyrosine kinases and phosphatases that have been shown to have the potential to alter the phosphorylation state of β‐catenin and thus the function of cadherins. Our laboratory has focused on the role of the nonreceptor tyrosine phosphatase PTP1B in regulating the phosphorylation of β‐catenin on tyrosine residues. Our data suggest that PTP1B is crucial for maintenance of N‐cadherin‐mediated adhesions in embryonic neural retina cells. By using an L‐cell model system constitutively expressing N‐cadherin, we have worked out many of the molecular interactions essential for this regulatory interaction. Extracellular cues that bias this critical regulatory interaction toward increased phosphorylation of β‐catenin may be a critical component of many developmental events. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11984870</pmid><doi>10.1002/dvdy.10087</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1058-8388
ispartof Developmental dynamics, 2002-05, Vol.224 (1), p.18-29
issn 1058-8388
1097-0177
language eng
recordid cdi_proquest_miscellaneous_71719173
source MEDLINE; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Animals
beta Catenin
cadherin
Cadherins - chemistry
Cadherins - genetics
Cadherins - metabolism
cell–cell adhesion
Cytoskeletal Proteins - metabolism
epithelial mesenchymal transformation
Humans
Intercellular Junctions - physiology
Mesoderm - physiology
Models, Biological
Molecular Sequence Data
p120ctn
Protein Binding
Protein Structure, Tertiary
protein tyrosine kinase
Protein Tyrosine Phosphatase, Non-Receptor Type 1
Protein Tyrosine Phosphatases - metabolism
PTP1B, protein tyrosine phosphatase
Trans-Activators - metabolism
α‐catenin
β‐catenin
title Turn‐off, drop‐out: Functional state switching of cadherins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turn%E2%80%90off,%20drop%E2%80%90out:%20Functional%20state%20switching%20of%20cadherins&rft.jtitle=Developmental%20dynamics&rft.au=Lilien,%20Jack&rft.date=2002-05&rft.volume=224&rft.issue=1&rft.spage=18&rft.epage=29&rft.pages=18-29&rft.issn=1058-8388&rft.eissn=1097-0177&rft_id=info:doi/10.1002/dvdy.10087&rft_dat=%3Cproquest_cross%3E71719173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71719173&rft_id=info:pmid/11984870&rfr_iscdi=true