Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network
An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2004-04, Vol.25 (6), p.779-789 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | 6 |
container_start_page | 779 |
container_title | Journal of computational chemistry |
container_volume | 25 |
creator | Keil, Matthias Exner, Thomas E. Brickmann, Jürgen |
description | An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004 |
doi_str_mv | 10.1002/jcc.10361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71718691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71718691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</originalsourceid><addsrcrecordid>eNp1kE9v1DAQRy0EokvhwBdAPiFxSOuJ4z_hRldQFqqCVBDcrIkzWdxmk63taOm3J3QXOHGaObzfOzzGnoM4ASHK02vv50dqeMAWIGpd1NZ8f8gWAuqysFrBEXuS0rUQQipdPWZHoARAqcSChc-YM8WBR_Ljegg5jANPOWKmdaDEuzHyzdiTn3qMPE2xQ0_pNV-tVif8LAxtGNY8hUx8G6kN_n6_C_kHRz7QFLGfT96N8eYpe9Rhn-jZ4R6zr-_eflm-Ly4-na-Wby4KL1UNBVoD1Omq0rKuDFqqTNdpaI1qFWIDtmxlaeq2RFtBLTqrTCuRmkZpVI3V8pi93Hu3cbydKGW3CclT3-NA45ScAQNW1zCDr_agj2NKkTq3jWGD8c6BcL-7urmru-86sy8O0qnZUPuPPIScgdM9sAs93f3f5D4sl3-UxX4RUqaffxcYb5w20ij37fLcKaUvy6uPZ-5K_gIXi5F3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71718691</pqid></control><display><type>article</type><title>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Keil, Matthias ; Exner, Thomas E. ; Brickmann, Jürgen</creator><creatorcontrib>Keil, Matthias ; Exner, Thomas E. ; Brickmann, Jürgen</creatorcontrib><description>An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.10361</identifier><identifier>PMID: 15011250</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; binding sites ; DNA - chemistry ; Models, Molecular ; molecular recognition ; molecular surface ; neural network ; Neural Networks (Computer) ; Protein Binding ; Protein Conformation ; Proteins - chemistry</subject><ispartof>Journal of computational chemistry, 2004-04, Vol.25 (6), p.779-789</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779-789, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</citedby><cites>FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.10361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.10361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15011250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keil, Matthias</creatorcontrib><creatorcontrib>Exner, Thomas E.</creatorcontrib><creatorcontrib>Brickmann, Jürgen</creatorcontrib><title>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004</description><subject>Algorithms</subject><subject>binding sites</subject><subject>DNA - chemistry</subject><subject>Models, Molecular</subject><subject>molecular recognition</subject><subject>molecular surface</subject><subject>neural network</subject><subject>Neural Networks (Computer)</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9v1DAQRy0EokvhwBdAPiFxSOuJ4z_hRldQFqqCVBDcrIkzWdxmk63taOm3J3QXOHGaObzfOzzGnoM4ASHK02vv50dqeMAWIGpd1NZ8f8gWAuqysFrBEXuS0rUQQipdPWZHoARAqcSChc-YM8WBR_Ljegg5jANPOWKmdaDEuzHyzdiTn3qMPE2xQ0_pNV-tVif8LAxtGNY8hUx8G6kN_n6_C_kHRz7QFLGfT96N8eYpe9Rhn-jZ4R6zr-_eflm-Ly4-na-Wby4KL1UNBVoD1Omq0rKuDFqqTNdpaI1qFWIDtmxlaeq2RFtBLTqrTCuRmkZpVI3V8pi93Hu3cbydKGW3CclT3-NA45ScAQNW1zCDr_agj2NKkTq3jWGD8c6BcL-7urmru-86sy8O0qnZUPuPPIScgdM9sAs93f3f5D4sl3-UxX4RUqaffxcYb5w20ij37fLcKaUvy6uPZ-5K_gIXi5F3</recordid><startdate>20040430</startdate><enddate>20040430</enddate><creator>Keil, Matthias</creator><creator>Exner, Thomas E.</creator><creator>Brickmann, Jürgen</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040430</creationdate><title>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</title><author>Keil, Matthias ; Exner, Thomas E. ; Brickmann, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>binding sites</topic><topic>DNA - chemistry</topic><topic>Models, Molecular</topic><topic>molecular recognition</topic><topic>molecular surface</topic><topic>neural network</topic><topic>Neural Networks (Computer)</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keil, Matthias</creatorcontrib><creatorcontrib>Exner, Thomas E.</creatorcontrib><creatorcontrib>Brickmann, Jürgen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keil, Matthias</au><au>Exner, Thomas E.</au><au>Brickmann, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2004-04-30</date><risdate>2004</risdate><volume>25</volume><issue>6</issue><spage>779</spage><epage>789</epage><pages>779-789</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15011250</pmid><doi>10.1002/jcc.10361</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2004-04, Vol.25 (6), p.779-789 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_71718691 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms binding sites DNA - chemistry Models, Molecular molecular recognition molecular surface neural network Neural Networks (Computer) Protein Binding Protein Conformation Proteins - chemistry |
title | Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20strategies%20for%20molecular%20surfaces:%20III.%20Binding%20site%20prediction%20with%20a%20neural%20network&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Keil,%20Matthias&rft.date=2004-04-30&rft.volume=25&rft.issue=6&rft.spage=779&rft.epage=789&rft.pages=779-789&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.10361&rft_dat=%3Cproquest_cross%3E71718691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71718691&rft_id=info:pmid/15011250&rfr_iscdi=true |