Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network

An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2004-04, Vol.25 (6), p.779-789
Hauptverfasser: Keil, Matthias, Exner, Thomas E., Brickmann, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 6
container_start_page 779
container_title Journal of computational chemistry
container_volume 25
creator Keil, Matthias
Exner, Thomas E.
Brickmann, Jürgen
description An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004
doi_str_mv 10.1002/jcc.10361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71718691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71718691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</originalsourceid><addsrcrecordid>eNp1kE9v1DAQRy0EokvhwBdAPiFxSOuJ4z_hRldQFqqCVBDcrIkzWdxmk63taOm3J3QXOHGaObzfOzzGnoM4ASHK02vv50dqeMAWIGpd1NZ8f8gWAuqysFrBEXuS0rUQQipdPWZHoARAqcSChc-YM8WBR_Ljegg5jANPOWKmdaDEuzHyzdiTn3qMPE2xQ0_pNV-tVif8LAxtGNY8hUx8G6kN_n6_C_kHRz7QFLGfT96N8eYpe9Rhn-jZ4R6zr-_eflm-Ly4-na-Wby4KL1UNBVoD1Omq0rKuDFqqTNdpaI1qFWIDtmxlaeq2RFtBLTqrTCuRmkZpVI3V8pi93Hu3cbydKGW3CclT3-NA45ScAQNW1zCDr_agj2NKkTq3jWGD8c6BcL-7urmru-86sy8O0qnZUPuPPIScgdM9sAs93f3f5D4sl3-UxX4RUqaffxcYb5w20ij37fLcKaUvy6uPZ-5K_gIXi5F3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71718691</pqid></control><display><type>article</type><title>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Keil, Matthias ; Exner, Thomas E. ; Brickmann, Jürgen</creator><creatorcontrib>Keil, Matthias ; Exner, Thomas E. ; Brickmann, Jürgen</creatorcontrib><description>An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.10361</identifier><identifier>PMID: 15011250</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; binding sites ; DNA - chemistry ; Models, Molecular ; molecular recognition ; molecular surface ; neural network ; Neural Networks (Computer) ; Protein Binding ; Protein Conformation ; Proteins - chemistry</subject><ispartof>Journal of computational chemistry, 2004-04, Vol.25 (6), p.779-789</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779-789, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</citedby><cites>FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.10361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.10361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15011250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keil, Matthias</creatorcontrib><creatorcontrib>Exner, Thomas E.</creatorcontrib><creatorcontrib>Brickmann, Jürgen</creatorcontrib><title>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004</description><subject>Algorithms</subject><subject>binding sites</subject><subject>DNA - chemistry</subject><subject>Models, Molecular</subject><subject>molecular recognition</subject><subject>molecular surface</subject><subject>neural network</subject><subject>Neural Networks (Computer)</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9v1DAQRy0EokvhwBdAPiFxSOuJ4z_hRldQFqqCVBDcrIkzWdxmk63taOm3J3QXOHGaObzfOzzGnoM4ASHK02vv50dqeMAWIGpd1NZ8f8gWAuqysFrBEXuS0rUQQipdPWZHoARAqcSChc-YM8WBR_Ljegg5jANPOWKmdaDEuzHyzdiTn3qMPE2xQ0_pNV-tVif8LAxtGNY8hUx8G6kN_n6_C_kHRz7QFLGfT96N8eYpe9Rhn-jZ4R6zr-_eflm-Ly4-na-Wby4KL1UNBVoD1Omq0rKuDFqqTNdpaI1qFWIDtmxlaeq2RFtBLTqrTCuRmkZpVI3V8pi93Hu3cbydKGW3CclT3-NA45ScAQNW1zCDr_agj2NKkTq3jWGD8c6BcL-7urmru-86sy8O0qnZUPuPPIScgdM9sAs93f3f5D4sl3-UxX4RUqaffxcYb5w20ij37fLcKaUvy6uPZ-5K_gIXi5F3</recordid><startdate>20040430</startdate><enddate>20040430</enddate><creator>Keil, Matthias</creator><creator>Exner, Thomas E.</creator><creator>Brickmann, Jürgen</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040430</creationdate><title>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</title><author>Keil, Matthias ; Exner, Thomas E. ; Brickmann, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-a871ef64463947a8e47ff61d75d5aab182d3279d2a84190f857d3aebb56a5b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>binding sites</topic><topic>DNA - chemistry</topic><topic>Models, Molecular</topic><topic>molecular recognition</topic><topic>molecular surface</topic><topic>neural network</topic><topic>Neural Networks (Computer)</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keil, Matthias</creatorcontrib><creatorcontrib>Exner, Thomas E.</creatorcontrib><creatorcontrib>Brickmann, Jürgen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keil, Matthias</au><au>Exner, Thomas E.</au><au>Brickmann, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2004-04-30</date><risdate>2004</risdate><volume>25</volume><issue>6</issue><spage>779</spage><epage>789</epage><pages>779-789</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>An algorithm for the identification of possible binding sites of biomolecules, which are represented as regions of the molecular surface, is introduced. The algorithm is based on the segmentation of the molecular surface into overlapping patches as described in the first article of this series.1 The properties of these patches (calculated on the basis of physical and chemical properties) are used for the analysis of the molecular surfaces of 7821 proteins and protein complexes. Special attention is drawn to known protein binding sites. A binding site identification algorithm is realized on the basis of the calculated data using a neural network strategy. The neural network is able to classify surface patches as protein–protein, protein–DNA, protein–ligand, or nonbinding sites. To show the capability of the algorithm, results of the surface analysis and the predictions are presented and discussed with representative examples. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 779–789, 2004</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15011250</pmid><doi>10.1002/jcc.10361</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2004-04, Vol.25 (6), p.779-789
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_71718691
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
binding sites
DNA - chemistry
Models, Molecular
molecular recognition
molecular surface
neural network
Neural Networks (Computer)
Protein Binding
Protein Conformation
Proteins - chemistry
title Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20strategies%20for%20molecular%20surfaces:%20III.%20Binding%20site%20prediction%20with%20a%20neural%20network&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Keil,%20Matthias&rft.date=2004-04-30&rft.volume=25&rft.issue=6&rft.spage=779&rft.epage=789&rft.pages=779-789&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.10361&rft_dat=%3Cproquest_cross%3E71718691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71718691&rft_id=info:pmid/15011250&rfr_iscdi=true