Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen

The rate of acid-catalyzed hydrolysis of glucose-1-phosphate (G1P) when adsorbed to aluminum hydroxide adjuvant was significantly slower than the rate of hydrolysis of a solution of G1P at the same pH. It was concluded that the positively charged aluminum hydroxide adjuvant (iep 11.4) electrostatica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccine 2004-03, Vol.22 (9), p.1172-1176
Hauptverfasser: Wittayanukulluk, Arunee, Jiang, Dongping, Regnier, Fred E, Hem, Stanley L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1176
container_issue 9
container_start_page 1172
container_title Vaccine
container_volume 22
creator Wittayanukulluk, Arunee
Jiang, Dongping
Regnier, Fred E
Hem, Stanley L
description The rate of acid-catalyzed hydrolysis of glucose-1-phosphate (G1P) when adsorbed to aluminum hydroxide adjuvant was significantly slower than the rate of hydrolysis of a solution of G1P at the same pH. It was concluded that the positively charged aluminum hydroxide adjuvant (iep 11.4) electrostatically attracted anions including hydroxyls to form a double layer surrounding the adjuvant particles. Thus, the pH of the microenvironment surrounding the aluminum hydroxide adjuvant was higher than the bulk pH. Adsorbed G1P hydrolyzed at a rate associated with the pH of the microenvironment of the surface of the adjuvant rather than with the pH of the bulk solution. Comparison of the rate constant for the hydrolysis of adsorbed G1P to the pH-stability profile of G1P in solution revealed that adsorbed G1P hydrolyzed at a rate associated with a pH that was approximately two pH units higher than the bulk pH. The results suggest that the chemical stability of antigens that degrade by pH-dependent mechanisms can be optimized by modifying the surface charge of the aluminum-containing adjuvant to produce the pH of maximum stability in the microenvironment of the adjuvant.
doi_str_mv 10.1016/j.vaccine.2003.09.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71711693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X03007291</els_id><sourcerecordid>71711693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-6cfdeb839c927731f3ee00bcca3f3d5865dc1663508c8e9d07f1bc5727760cb53</originalsourceid><addsrcrecordid>eNqF0UGL1DAUB_AgijuufgSlIHprfWmatD2JLKsrLHhR8BbS5MVJaZMxaQfn25txCoqXPQXC7_9I3p-QlxQqClS8G6uj0tp5rGoAVkFfAWsfkR3tWlbWnHaPyQ5q0ZQNhe9X5FlKIwBwRvun5IrynBEN35Hx1lrUSxFsMTsdA_qji8HP6JficHe-VtM6O7_Oxf5kYvjlDBbKjOtRZRF8seyx0HvMYTUVaVGDm9xy-hM0KcQBTZGl-4H-OXli1ZTwxXZek28fb7_e3JX3Xz59vvlwX-qGw1IKbQ0OHet1X7cto5YhAgxaK2aZ4Z3gRlMhGIdOd9gbaC0dNG8zFqAHzq7J28vcQww_V0yLnF3SOE3KY1iTbGlLqejZg5C2ddOJpsvw9X9wDGv0-ROS8iaPyq-ts-IXldeYUkQrD9HNKp4kBXnuTI5y60yeO5PQy9xZzr3apq_DjOZvaispgzcbUClv2UbltUv_ON5Bz2h27y8O83aPDqNM2qHXaFzMHUsT3ANP-Q1oMLgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546938392</pqid></control><display><type>article</type><title>Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Wittayanukulluk, Arunee ; Jiang, Dongping ; Regnier, Fred E ; Hem, Stanley L</creator><creatorcontrib>Wittayanukulluk, Arunee ; Jiang, Dongping ; Regnier, Fred E ; Hem, Stanley L</creatorcontrib><description>The rate of acid-catalyzed hydrolysis of glucose-1-phosphate (G1P) when adsorbed to aluminum hydroxide adjuvant was significantly slower than the rate of hydrolysis of a solution of G1P at the same pH. It was concluded that the positively charged aluminum hydroxide adjuvant (iep 11.4) electrostatically attracted anions including hydroxyls to form a double layer surrounding the adjuvant particles. Thus, the pH of the microenvironment surrounding the aluminum hydroxide adjuvant was higher than the bulk pH. Adsorbed G1P hydrolyzed at a rate associated with the pH of the microenvironment of the surface of the adjuvant rather than with the pH of the bulk solution. Comparison of the rate constant for the hydrolysis of adsorbed G1P to the pH-stability profile of G1P in solution revealed that adsorbed G1P hydrolyzed at a rate associated with a pH that was approximately two pH units higher than the bulk pH. The results suggest that the chemical stability of antigens that degrade by pH-dependent mechanisms can be optimized by modifying the surface charge of the aluminum-containing adjuvant to produce the pH of maximum stability in the microenvironment of the adjuvant.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2003.09.037</identifier><identifier>PMID: 15003645</identifier><identifier>CODEN: VACCDE</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Absorption ; Adjuvants, Immunologic - chemistry ; Adsorption ; Aluminum ; Aluminum Hydroxide - chemistry ; Aluminum hydroxide adjuvant ; Anions ; Antigens ; Antigens - chemistry ; Applied microbiology ; Biological and medical sciences ; Colorimetry ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose-1-phosphate hydrolysis ; Glucosephosphates - chemistry ; Hydrogen-Ion Concentration ; Hydrolysis ; Kinetics ; Microbiology ; Microenvironment pH ; Molybdenum - chemistry ; Studies ; Temperature ; Thermodynamics ; Vaccines ; Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)</subject><ispartof>Vaccine, 2004-03, Vol.22 (9), p.1172-1176</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Elsevier Limited Mar 12, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-6cfdeb839c927731f3ee00bcca3f3d5865dc1663508c8e9d07f1bc5727760cb53</citedby><cites>FETCH-LOGICAL-c450t-6cfdeb839c927731f3ee00bcca3f3d5865dc1663508c8e9d07f1bc5727760cb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1546938392?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15580931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15003645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittayanukulluk, Arunee</creatorcontrib><creatorcontrib>Jiang, Dongping</creatorcontrib><creatorcontrib>Regnier, Fred E</creatorcontrib><creatorcontrib>Hem, Stanley L</creatorcontrib><title>Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen</title><title>Vaccine</title><addtitle>Vaccine</addtitle><description>The rate of acid-catalyzed hydrolysis of glucose-1-phosphate (G1P) when adsorbed to aluminum hydroxide adjuvant was significantly slower than the rate of hydrolysis of a solution of G1P at the same pH. It was concluded that the positively charged aluminum hydroxide adjuvant (iep 11.4) electrostatically attracted anions including hydroxyls to form a double layer surrounding the adjuvant particles. Thus, the pH of the microenvironment surrounding the aluminum hydroxide adjuvant was higher than the bulk pH. Adsorbed G1P hydrolyzed at a rate associated with the pH of the microenvironment of the surface of the adjuvant rather than with the pH of the bulk solution. Comparison of the rate constant for the hydrolysis of adsorbed G1P to the pH-stability profile of G1P in solution revealed that adsorbed G1P hydrolyzed at a rate associated with a pH that was approximately two pH units higher than the bulk pH. The results suggest that the chemical stability of antigens that degrade by pH-dependent mechanisms can be optimized by modifying the surface charge of the aluminum-containing adjuvant to produce the pH of maximum stability in the microenvironment of the adjuvant.</description><subject>Absorption</subject><subject>Adjuvants, Immunologic - chemistry</subject><subject>Adsorption</subject><subject>Aluminum</subject><subject>Aluminum Hydroxide - chemistry</subject><subject>Aluminum hydroxide adjuvant</subject><subject>Anions</subject><subject>Antigens</subject><subject>Antigens - chemistry</subject><subject>Applied microbiology</subject><subject>Biological and medical sciences</subject><subject>Colorimetry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose-1-phosphate hydrolysis</subject><subject>Glucosephosphates - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Microbiology</subject><subject>Microenvironment pH</subject><subject>Molybdenum - chemistry</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Vaccines</subject><subject>Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0UGL1DAUB_AgijuufgSlIHprfWmatD2JLKsrLHhR8BbS5MVJaZMxaQfn25txCoqXPQXC7_9I3p-QlxQqClS8G6uj0tp5rGoAVkFfAWsfkR3tWlbWnHaPyQ5q0ZQNhe9X5FlKIwBwRvun5IrynBEN35Hx1lrUSxFsMTsdA_qji8HP6JficHe-VtM6O7_Oxf5kYvjlDBbKjOtRZRF8seyx0HvMYTUVaVGDm9xy-hM0KcQBTZGl-4H-OXli1ZTwxXZek28fb7_e3JX3Xz59vvlwX-qGw1IKbQ0OHet1X7cto5YhAgxaK2aZ4Z3gRlMhGIdOd9gbaC0dNG8zFqAHzq7J28vcQww_V0yLnF3SOE3KY1iTbGlLqejZg5C2ddOJpsvw9X9wDGv0-ROS8iaPyq-ts-IXldeYUkQrD9HNKp4kBXnuTI5y60yeO5PQy9xZzr3apq_DjOZvaispgzcbUClv2UbltUv_ON5Bz2h27y8O83aPDqNM2qHXaFzMHUsT3ANP-Q1oMLgM</recordid><startdate>20040312</startdate><enddate>20040312</enddate><creator>Wittayanukulluk, Arunee</creator><creator>Jiang, Dongping</creator><creator>Regnier, Fred E</creator><creator>Hem, Stanley L</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040312</creationdate><title>Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen</title><author>Wittayanukulluk, Arunee ; Jiang, Dongping ; Regnier, Fred E ; Hem, Stanley L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-6cfdeb839c927731f3ee00bcca3f3d5865dc1663508c8e9d07f1bc5727760cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Absorption</topic><topic>Adjuvants, Immunologic - chemistry</topic><topic>Adsorption</topic><topic>Aluminum</topic><topic>Aluminum Hydroxide - chemistry</topic><topic>Aluminum hydroxide adjuvant</topic><topic>Anions</topic><topic>Antigens</topic><topic>Antigens - chemistry</topic><topic>Applied microbiology</topic><topic>Biological and medical sciences</topic><topic>Colorimetry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose-1-phosphate hydrolysis</topic><topic>Glucosephosphates - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Microbiology</topic><topic>Microenvironment pH</topic><topic>Molybdenum - chemistry</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Vaccines</topic><topic>Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittayanukulluk, Arunee</creatorcontrib><creatorcontrib>Jiang, Dongping</creatorcontrib><creatorcontrib>Regnier, Fred E</creatorcontrib><creatorcontrib>Hem, Stanley L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittayanukulluk, Arunee</au><au>Jiang, Dongping</au><au>Regnier, Fred E</au><au>Hem, Stanley L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen</atitle><jtitle>Vaccine</jtitle><addtitle>Vaccine</addtitle><date>2004-03-12</date><risdate>2004</risdate><volume>22</volume><issue>9</issue><spage>1172</spage><epage>1176</epage><pages>1172-1176</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><coden>VACCDE</coden><abstract>The rate of acid-catalyzed hydrolysis of glucose-1-phosphate (G1P) when adsorbed to aluminum hydroxide adjuvant was significantly slower than the rate of hydrolysis of a solution of G1P at the same pH. It was concluded that the positively charged aluminum hydroxide adjuvant (iep 11.4) electrostatically attracted anions including hydroxyls to form a double layer surrounding the adjuvant particles. Thus, the pH of the microenvironment surrounding the aluminum hydroxide adjuvant was higher than the bulk pH. Adsorbed G1P hydrolyzed at a rate associated with the pH of the microenvironment of the surface of the adjuvant rather than with the pH of the bulk solution. Comparison of the rate constant for the hydrolysis of adsorbed G1P to the pH-stability profile of G1P in solution revealed that adsorbed G1P hydrolyzed at a rate associated with a pH that was approximately two pH units higher than the bulk pH. The results suggest that the chemical stability of antigens that degrade by pH-dependent mechanisms can be optimized by modifying the surface charge of the aluminum-containing adjuvant to produce the pH of maximum stability in the microenvironment of the adjuvant.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15003645</pmid><doi>10.1016/j.vaccine.2003.09.037</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-410X
ispartof Vaccine, 2004-03, Vol.22 (9), p.1172-1176
issn 0264-410X
1873-2518
language eng
recordid cdi_proquest_miscellaneous_71711693
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Absorption
Adjuvants, Immunologic - chemistry
Adsorption
Aluminum
Aluminum Hydroxide - chemistry
Aluminum hydroxide adjuvant
Anions
Antigens
Antigens - chemistry
Applied microbiology
Biological and medical sciences
Colorimetry
Fundamental and applied biological sciences. Psychology
Glucose
Glucose-1-phosphate hydrolysis
Glucosephosphates - chemistry
Hydrogen-Ion Concentration
Hydrolysis
Kinetics
Microbiology
Microenvironment pH
Molybdenum - chemistry
Studies
Temperature
Thermodynamics
Vaccines
Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)
title Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microenvironment%20pH%20of%20aluminum%20hydroxide%20adjuvant%20on%20the%20chemical%20stability%20of%20adsorbed%20antigen&rft.jtitle=Vaccine&rft.au=Wittayanukulluk,%20Arunee&rft.date=2004-03-12&rft.volume=22&rft.issue=9&rft.spage=1172&rft.epage=1176&rft.pages=1172-1176&rft.issn=0264-410X&rft.eissn=1873-2518&rft.coden=VACCDE&rft_id=info:doi/10.1016/j.vaccine.2003.09.037&rft_dat=%3Cproquest_cross%3E71711693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546938392&rft_id=info:pmid/15003645&rft_els_id=S0264410X03007291&rfr_iscdi=true