A DNA enzyme that mimics the first step of RNA splicing
We have discovered an artificial DNA enzyme that mimics the first step of RNA splicing. In vitro selection was used to identify DNA enzymes that ligate RNA. One of the new DNA enzymes carries out splicing-related catalysis by specifically recognizing an unpaired internal adenosine and facilitating a...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2004-03, Vol.11 (3), p.270-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have discovered an artificial DNA enzyme that mimics the first step of RNA splicing.
In vitro
selection was used to identify DNA enzymes that ligate RNA. One of the new DNA enzymes carries out splicing-related catalysis by specifically recognizing an unpaired internal adenosine and facilitating attack of its 2′-hydroxyl onto a 5′-triphosphate. This reaction forms 2′,5′-branched RNA and is analogous to the first step of
in vivo
RNA splicing, in which a ribozyme cleaves itself with formation of a branched intermediate. Unlike a natural ribozyme, the new DNA enzyme has no 2′-hydroxyl groups to aid in the catalytic mechanism. Our finding has two important implications. First, branch-site adenosine reactivity seems to be mechanistically favored by nucleic acid enzymes. Second, hydroxyl groups are not obligatory components of nucleic acid enzymes that carry out biologically related catalysis. |
---|---|
ISSN: | 1545-9993 1545-9985 |
DOI: | 10.1038/nsmb727 |