PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration

Successful axon regeneration in the mammalian central nervous system (CNS) is at least partially compromised due to the inhibitors associated with myelin and glial scar. However, the intracellular signaling mechanisms underlying these inhibitory activities are largely unknown. Here we provide bioche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2004-03, Vol.7 (3), p.261-268
Hauptverfasser: Sivasankaran, Rajeev, Pei, Jiong, Wang, Kevin C, Zhang, Yi Ping, Shields, Christopher B, Xu, Xiao-Ming, He, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 3
container_start_page 261
container_title Nature neuroscience
container_volume 7
creator Sivasankaran, Rajeev
Pei, Jiong
Wang, Kevin C
Zhang, Yi Ping
Shields, Christopher B
Xu, Xiao-Ming
He, Zhigang
description Successful axon regeneration in the mammalian central nervous system (CNS) is at least partially compromised due to the inhibitors associated with myelin and glial scar. However, the intracellular signaling mechanisms underlying these inhibitory activities are largely unknown. Here we provide biochemical and functional evidence that conventional isoforms of protein kinase C (PKC) are key components in the signaling pathways that mediate the inhibitory activities of myelin components and chondroitin sulfate proteoglycans (CSPGs), the major class of inhibitors in the glial scar. Both the myelin inhibitors and CSPGs induce PKC activation. Blocking PKC activity pharmacologically and genetically attenuates the ability of CNS myelin and CSPGs to activate Rho and inhibit neurite outgrowth. Intrathecal infusion of a PKC inhibitor, Gö6976, into the site of dorsal hemisection promotes regeneration of dorsal column axons across and beyond the lesion site in adult rats. Thus, perturbing PKC activity could represent a therapeutic approach to stimulating axon regeneration after brain and spinal cord injuries.
doi_str_mv 10.1038/nn1193
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71673526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185553551</galeid><sourcerecordid>A185553551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-ead96f909182118c5d275cb9ba3673ce13a742e8ab7fc9407c85d6afe8dab50a3</originalsourceid><addsrcrecordid>eNqFkUlr3TAUhUVpaIa2P6GILhK6cCrZ1rQMjw4hgZQOayHLV46CLaWSDHn_PirvQUg2RQtN3zmcy0HoPSXnlHTycwiUqu4VOqKs5w0VLX9dz0SJhreMH6LjnO8IIYJJ9QYd0l4IQqU4Qu7H1QYvMHpTIGMfbv3gS0xbDM6BLRlHh5ctzD5gE0Zsb2MYU_Sl3vM6u6rC9ykWiNO8tSZUvoIPMZgZJ5ggQDLFx_AWHTgzZ3i330_Qn69ffm--N9c33y43F9eNZaQvDZhRcaeIorKlVFo2toLZQQ2m46KzQDsj-hakGYSzqifCSjZy40COZmDEdCfodOdbQ_1dIRe9-Gxhnk2AuGYtaPVhLf8vSFXLhehJBT--AO_imup8WbeMkJ5I1VXofAdNZgbtg4slGVvXCIu3MYDz9f2CSsZYxxitgk_PBJUp8FAms-asL3_9fM7uo9oUc07g9H3yi0lbTYn-V77elV_BD_uo61ArfcL2bVfgbAfk-hUmSE-zvLB6BLdCtmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>250040893</pqid></control><display><type>article</type><title>PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sivasankaran, Rajeev ; Pei, Jiong ; Wang, Kevin C ; Zhang, Yi Ping ; Shields, Christopher B ; Xu, Xiao-Ming ; He, Zhigang</creator><creatorcontrib>Sivasankaran, Rajeev ; Pei, Jiong ; Wang, Kevin C ; Zhang, Yi Ping ; Shields, Christopher B ; Xu, Xiao-Ming ; He, Zhigang</creatorcontrib><description>Successful axon regeneration in the mammalian central nervous system (CNS) is at least partially compromised due to the inhibitors associated with myelin and glial scar. However, the intracellular signaling mechanisms underlying these inhibitory activities are largely unknown. Here we provide biochemical and functional evidence that conventional isoforms of protein kinase C (PKC) are key components in the signaling pathways that mediate the inhibitory activities of myelin components and chondroitin sulfate proteoglycans (CSPGs), the major class of inhibitors in the glial scar. Both the myelin inhibitors and CSPGs induce PKC activation. Blocking PKC activity pharmacologically and genetically attenuates the ability of CNS myelin and CSPGs to activate Rho and inhibit neurite outgrowth. Intrathecal infusion of a PKC inhibitor, Gö6976, into the site of dorsal hemisection promotes regeneration of dorsal column axons across and beyond the lesion site in adult rats. Thus, perturbing PKC activity could represent a therapeutic approach to stimulating axon regeneration after brain and spinal cord injuries.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1193</identifier><identifier>PMID: 14770187</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animal Genetics and Genomics ; Animals ; Axons ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Cells, Cultured ; Central Nervous System - cytology ; Central Nervous System - growth &amp; development ; Central Nervous System - injuries ; Chondroitin ; Chondroitin Sulfate Proteoglycans - metabolism ; Chondroitin Sulfate Proteoglycans - pharmacology ; Enzyme Inhibitors - pharmacology ; Female ; Growth Cones - drug effects ; Growth Cones - metabolism ; Growth Cones - ultrastructure ; Myelin proteins ; Myelin Proteins - metabolism ; Myelin Proteins - pharmacology ; Myelin-Associated Glycoprotein - metabolism ; Myelin-Associated Glycoprotein - pharmacology ; Nerve Regeneration - drug effects ; Nerve Regeneration - physiology ; Neural Pathways - cytology ; Neural Pathways - growth &amp; development ; Neural Pathways - metabolism ; Neurobiology ; Neurosciences ; Nogo Proteins ; Physiological aspects ; Protein Isoforms - antagonists &amp; inhibitors ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein Kinase C - antagonists &amp; inhibitors ; Protein Kinase C - genetics ; Protein Kinase C - metabolism ; Protein kinases ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins - metabolism ; Recombinant Fusion Proteins - pharmacology ; Recovery of Function - drug effects ; Recovery of Function - physiology ; Repressor Proteins - metabolism ; Repressor Proteins - pharmacology ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Spinal Cord - cytology ; Spinal Cord - growth &amp; development ; Spinal Cord - metabolism ; Treatment Outcome</subject><ispartof>Nature neuroscience, 2004-03, Vol.7 (3), p.261-268</ispartof><rights>Springer Nature America, Inc. 2004</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-ead96f909182118c5d275cb9ba3673ce13a742e8ab7fc9407c85d6afe8dab50a3</citedby><cites>FETCH-LOGICAL-c504t-ead96f909182118c5d275cb9ba3673ce13a742e8ab7fc9407c85d6afe8dab50a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1193$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1193$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14770187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sivasankaran, Rajeev</creatorcontrib><creatorcontrib>Pei, Jiong</creatorcontrib><creatorcontrib>Wang, Kevin C</creatorcontrib><creatorcontrib>Zhang, Yi Ping</creatorcontrib><creatorcontrib>Shields, Christopher B</creatorcontrib><creatorcontrib>Xu, Xiao-Ming</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><title>PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Successful axon regeneration in the mammalian central nervous system (CNS) is at least partially compromised due to the inhibitors associated with myelin and glial scar. However, the intracellular signaling mechanisms underlying these inhibitory activities are largely unknown. Here we provide biochemical and functional evidence that conventional isoforms of protein kinase C (PKC) are key components in the signaling pathways that mediate the inhibitory activities of myelin components and chondroitin sulfate proteoglycans (CSPGs), the major class of inhibitors in the glial scar. Both the myelin inhibitors and CSPGs induce PKC activation. Blocking PKC activity pharmacologically and genetically attenuates the ability of CNS myelin and CSPGs to activate Rho and inhibit neurite outgrowth. Intrathecal infusion of a PKC inhibitor, Gö6976, into the site of dorsal hemisection promotes regeneration of dorsal column axons across and beyond the lesion site in adult rats. Thus, perturbing PKC activity could represent a therapeutic approach to stimulating axon regeneration after brain and spinal cord injuries.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axons</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cells, Cultured</subject><subject>Central Nervous System - cytology</subject><subject>Central Nervous System - growth &amp; development</subject><subject>Central Nervous System - injuries</subject><subject>Chondroitin</subject><subject>Chondroitin Sulfate Proteoglycans - metabolism</subject><subject>Chondroitin Sulfate Proteoglycans - pharmacology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Female</subject><subject>Growth Cones - drug effects</subject><subject>Growth Cones - metabolism</subject><subject>Growth Cones - ultrastructure</subject><subject>Myelin proteins</subject><subject>Myelin Proteins - metabolism</subject><subject>Myelin Proteins - pharmacology</subject><subject>Myelin-Associated Glycoprotein - metabolism</subject><subject>Myelin-Associated Glycoprotein - pharmacology</subject><subject>Nerve Regeneration - drug effects</subject><subject>Nerve Regeneration - physiology</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - growth &amp; development</subject><subject>Neural Pathways - metabolism</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Nogo Proteins</subject><subject>Physiological aspects</subject><subject>Protein Isoforms - antagonists &amp; inhibitors</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Kinase C - antagonists &amp; inhibitors</subject><subject>Protein Kinase C - genetics</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein kinases</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Recovery of Function - drug effects</subject><subject>Recovery of Function - physiology</subject><subject>Repressor Proteins - metabolism</subject><subject>Repressor Proteins - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - growth &amp; development</subject><subject>Spinal Cord - metabolism</subject><subject>Treatment Outcome</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUlr3TAUhUVpaIa2P6GILhK6cCrZ1rQMjw4hgZQOayHLV46CLaWSDHn_PirvQUg2RQtN3zmcy0HoPSXnlHTycwiUqu4VOqKs5w0VLX9dz0SJhreMH6LjnO8IIYJJ9QYd0l4IQqU4Qu7H1QYvMHpTIGMfbv3gS0xbDM6BLRlHh5ctzD5gE0Zsb2MYU_Sl3vM6u6rC9ykWiNO8tSZUvoIPMZgZJ5ggQDLFx_AWHTgzZ3i330_Qn69ffm--N9c33y43F9eNZaQvDZhRcaeIorKlVFo2toLZQQ2m46KzQDsj-hakGYSzqifCSjZy40COZmDEdCfodOdbQ_1dIRe9-Gxhnk2AuGYtaPVhLf8vSFXLhehJBT--AO_imup8WbeMkJ5I1VXofAdNZgbtg4slGVvXCIu3MYDz9f2CSsZYxxitgk_PBJUp8FAms-asL3_9fM7uo9oUc07g9H3yi0lbTYn-V77elV_BD_uo61ArfcL2bVfgbAfk-hUmSE-zvLB6BLdCtmw</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Sivasankaran, Rajeev</creator><creator>Pei, Jiong</creator><creator>Wang, Kevin C</creator><creator>Zhang, Yi Ping</creator><creator>Shields, Christopher B</creator><creator>Xu, Xiao-Ming</creator><creator>He, Zhigang</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040301</creationdate><title>PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration</title><author>Sivasankaran, Rajeev ; Pei, Jiong ; Wang, Kevin C ; Zhang, Yi Ping ; Shields, Christopher B ; Xu, Xiao-Ming ; He, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-ead96f909182118c5d275cb9ba3673ce13a742e8ab7fc9407c85d6afe8dab50a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axons</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cells, Cultured</topic><topic>Central Nervous System - cytology</topic><topic>Central Nervous System - growth &amp; development</topic><topic>Central Nervous System - injuries</topic><topic>Chondroitin</topic><topic>Chondroitin Sulfate Proteoglycans - metabolism</topic><topic>Chondroitin Sulfate Proteoglycans - pharmacology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Female</topic><topic>Growth Cones - drug effects</topic><topic>Growth Cones - metabolism</topic><topic>Growth Cones - ultrastructure</topic><topic>Myelin proteins</topic><topic>Myelin Proteins - metabolism</topic><topic>Myelin Proteins - pharmacology</topic><topic>Myelin-Associated Glycoprotein - metabolism</topic><topic>Myelin-Associated Glycoprotein - pharmacology</topic><topic>Nerve Regeneration - drug effects</topic><topic>Nerve Regeneration - physiology</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - growth &amp; development</topic><topic>Neural Pathways - metabolism</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Nogo Proteins</topic><topic>Physiological aspects</topic><topic>Protein Isoforms - antagonists &amp; inhibitors</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Kinase C - antagonists &amp; inhibitors</topic><topic>Protein Kinase C - genetics</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein kinases</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Recovery of Function - drug effects</topic><topic>Recovery of Function - physiology</topic><topic>Repressor Proteins - metabolism</topic><topic>Repressor Proteins - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - growth &amp; development</topic><topic>Spinal Cord - metabolism</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivasankaran, Rajeev</creatorcontrib><creatorcontrib>Pei, Jiong</creatorcontrib><creatorcontrib>Wang, Kevin C</creatorcontrib><creatorcontrib>Zhang, Yi Ping</creatorcontrib><creatorcontrib>Shields, Christopher B</creatorcontrib><creatorcontrib>Xu, Xiao-Ming</creatorcontrib><creatorcontrib>He, Zhigang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivasankaran, Rajeev</au><au>Pei, Jiong</au><au>Wang, Kevin C</au><au>Zhang, Yi Ping</au><au>Shields, Christopher B</au><au>Xu, Xiao-Ming</au><au>He, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>7</volume><issue>3</issue><spage>261</spage><epage>268</epage><pages>261-268</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Successful axon regeneration in the mammalian central nervous system (CNS) is at least partially compromised due to the inhibitors associated with myelin and glial scar. However, the intracellular signaling mechanisms underlying these inhibitory activities are largely unknown. Here we provide biochemical and functional evidence that conventional isoforms of protein kinase C (PKC) are key components in the signaling pathways that mediate the inhibitory activities of myelin components and chondroitin sulfate proteoglycans (CSPGs), the major class of inhibitors in the glial scar. Both the myelin inhibitors and CSPGs induce PKC activation. Blocking PKC activity pharmacologically and genetically attenuates the ability of CNS myelin and CSPGs to activate Rho and inhibit neurite outgrowth. Intrathecal infusion of a PKC inhibitor, Gö6976, into the site of dorsal hemisection promotes regeneration of dorsal column axons across and beyond the lesion site in adult rats. Thus, perturbing PKC activity could represent a therapeutic approach to stimulating axon regeneration after brain and spinal cord injuries.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>14770187</pmid><doi>10.1038/nn1193</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2004-03, Vol.7 (3), p.261-268
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_71673526
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Animal Genetics and Genomics
Animals
Axons
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Cells, Cultured
Central Nervous System - cytology
Central Nervous System - growth & development
Central Nervous System - injuries
Chondroitin
Chondroitin Sulfate Proteoglycans - metabolism
Chondroitin Sulfate Proteoglycans - pharmacology
Enzyme Inhibitors - pharmacology
Female
Growth Cones - drug effects
Growth Cones - metabolism
Growth Cones - ultrastructure
Myelin proteins
Myelin Proteins - metabolism
Myelin Proteins - pharmacology
Myelin-Associated Glycoprotein - metabolism
Myelin-Associated Glycoprotein - pharmacology
Nerve Regeneration - drug effects
Nerve Regeneration - physiology
Neural Pathways - cytology
Neural Pathways - growth & development
Neural Pathways - metabolism
Neurobiology
Neurosciences
Nogo Proteins
Physiological aspects
Protein Isoforms - antagonists & inhibitors
Protein Isoforms - genetics
Protein Isoforms - metabolism
Protein Kinase C - antagonists & inhibitors
Protein Kinase C - genetics
Protein Kinase C - metabolism
Protein kinases
Rats
Rats, Sprague-Dawley
Recombinant Fusion Proteins - metabolism
Recombinant Fusion Proteins - pharmacology
Recovery of Function - drug effects
Recovery of Function - physiology
Repressor Proteins - metabolism
Repressor Proteins - pharmacology
Signal Transduction - drug effects
Signal Transduction - physiology
Spinal Cord - cytology
Spinal Cord - growth & development
Spinal Cord - metabolism
Treatment Outcome
title PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PKC%20mediates%20inhibitory%20effects%20of%20myelin%20and%20chondroitin%20sulfate%20proteoglycans%20on%20axonal%20regeneration&rft.jtitle=Nature%20neuroscience&rft.au=Sivasankaran,%20Rajeev&rft.date=2004-03-01&rft.volume=7&rft.issue=3&rft.spage=261&rft.epage=268&rft.pages=261-268&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1193&rft_dat=%3Cgale_proqu%3EA185553551%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=250040893&rft_id=info:pmid/14770187&rft_galeid=A185553551&rfr_iscdi=true