A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets

We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2008-07, Vol.30 (7), p.1158-1170
Hauptverfasser: Raykar, V.C., Duraiswami, R., Krishnapuram, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1170
container_issue 7
container_start_page 1158
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 30
creator Raykar, V.C.
Duraiswami, R.
Krishnapuram, B.
description We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.
doi_str_mv 10.1109/TPAMI.2007.70776
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_71664031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359376</ieee_id><sourcerecordid>903623955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</originalsourceid><addsrcrecordid>eNqFkU1vEzEQQC1ERUPgjoSELCQolw1jj71eH6O2gYogEC1ny-vYYct-FHv3wL-v00RF6qHIh7HlN-MZP0JeMVgwBvrj1ffl14sFB1ALBUqVT8iMadQFStRPyQxYyYuq4tUxeZ7SNQATEvAZOWaVlKABZuTLkq5sGumy3Q6xGX91NAyRrr2NfdNvqaU_bP97t1tNvRuboachDh1d27j1xaWzradndrT00o_pBTkKtk3-5SHOyc_V-dXp52L97dPF6XJdOKFgLGq0VjkB0taBM4WVRybqunToEDwG5pB7q7l2sPFcAGyYwGAD8BzzAefkZF_3Jg5_Jp9G0zXJ-ba1vR-mZDRgyVFLmcn3j5KKlaUAZP8FUQgumVYZ_PAoyErFELgSIqNvH6DXwxT7_DOmyv1J5HnNCewhF4eUog_mJjadjX8NA7NzbO4cm51jc-c4p7w51J3qzm_-JRykZuDdAbApGwrR9q5J9xwH1JWE3dCv91zjvb-_Fig15mduAeL_s7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862353232</pqid></control><display><type>article</type><title>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</title><source>IEEE Electronic Library (IEL)</source><creator>Raykar, V.C. ; Duraiswami, R. ; Krishnapuram, B.</creator><creatorcontrib>Raykar, V.C. ; Duraiswami, R. ; Krishnapuram, B.</creatorcontrib><description>We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2007.70776</identifier><identifier>PMID: 18550900</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation algorithms ; Artificial Intelligence ; Collaboration ; Computational complexity ; Computer science; control theory; systems ; Computer Simulation ; Computer systems and distributed systems. User interface ; Databases, Factual ; Exact sciences and technology ; Filtering ; Filtering algorithms ; Information retrieval ; Information Storage and Retrieval - methods ; Large-scale systems ; Learning ; Likelihood Functions ; Machine learning ; Mathematical analysis ; Mathematical models ; Microeconomics ; Models, Statistical ; Pattern Recognition, Automated - methods ; Ranking ; Search engines ; Software ; Statistics ; Training ; Training data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2008-07, Vol.30 (7), p.1158-1170</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</citedby><cites>FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4359376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20398501$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18550900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raykar, V.C.</creatorcontrib><creatorcontrib>Duraiswami, R.</creatorcontrib><creatorcontrib>Krishnapuram, B.</creatorcontrib><title>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Artificial Intelligence</subject><subject>Collaboration</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Databases, Factual</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Large-scale systems</subject><subject>Learning</subject><subject>Likelihood Functions</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microeconomics</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Ranking</subject><subject>Search engines</subject><subject>Software</subject><subject>Statistics</subject><subject>Training</subject><subject>Training data</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQQC1ERUPgjoSELCQolw1jj71eH6O2gYogEC1ny-vYYct-FHv3wL-v00RF6qHIh7HlN-MZP0JeMVgwBvrj1ffl14sFB1ALBUqVT8iMadQFStRPyQxYyYuq4tUxeZ7SNQATEvAZOWaVlKABZuTLkq5sGumy3Q6xGX91NAyRrr2NfdNvqaU_bP97t1tNvRuboachDh1d27j1xaWzradndrT00o_pBTkKtk3-5SHOyc_V-dXp52L97dPF6XJdOKFgLGq0VjkB0taBM4WVRybqunToEDwG5pB7q7l2sPFcAGyYwGAD8BzzAefkZF_3Jg5_Jp9G0zXJ-ba1vR-mZDRgyVFLmcn3j5KKlaUAZP8FUQgumVYZ_PAoyErFELgSIqNvH6DXwxT7_DOmyv1J5HnNCewhF4eUog_mJjadjX8NA7NzbO4cm51jc-c4p7w51J3qzm_-JRykZuDdAbApGwrR9q5J9xwH1JWE3dCv91zjvb-_Fig15mduAeL_s7A</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Raykar, V.C.</creator><creator>Duraiswami, R.</creator><creator>Krishnapuram, B.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</title><author>Raykar, V.C. ; Duraiswami, R. ; Krishnapuram, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Artificial Intelligence</topic><topic>Collaboration</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Databases, Factual</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Large-scale systems</topic><topic>Learning</topic><topic>Likelihood Functions</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microeconomics</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Ranking</topic><topic>Search engines</topic><topic>Software</topic><topic>Statistics</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raykar, V.C.</creatorcontrib><creatorcontrib>Duraiswami, R.</creatorcontrib><creatorcontrib>Krishnapuram, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raykar, V.C.</au><au>Duraiswami, R.</au><au>Krishnapuram, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>30</volume><issue>7</issue><spage>1158</spage><epage>1170</epage><pages>1158-1170</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>18550900</pmid><doi>10.1109/TPAMI.2007.70776</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2008-07, Vol.30 (7), p.1158-1170
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_71664031
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Approximation algorithms
Artificial Intelligence
Collaboration
Computational complexity
Computer science
control theory
systems
Computer Simulation
Computer systems and distributed systems. User interface
Databases, Factual
Exact sciences and technology
Filtering
Filtering algorithms
Information retrieval
Information Storage and Retrieval - methods
Large-scale systems
Learning
Likelihood Functions
Machine learning
Mathematical analysis
Mathematical models
Microeconomics
Models, Statistical
Pattern Recognition, Automated - methods
Ranking
Search engines
Software
Statistics
Training
Training data
title A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Algorithm%20for%20Learning%20a%20Ranking%20Function%20from%20Large-Scale%20Data%20Sets&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Raykar,%20V.C.&rft.date=2008-07-01&rft.volume=30&rft.issue=7&rft.spage=1158&rft.epage=1170&rft.pages=1158-1170&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2007.70776&rft_dat=%3Cproquest_RIE%3E903623955%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862353232&rft_id=info:pmid/18550900&rft_ieee_id=4359376&rfr_iscdi=true