A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets
We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorith...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2008-07, Vol.30 (7), p.1158-1170 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1170 |
---|---|
container_issue | 7 |
container_start_page | 1158 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 30 |
creator | Raykar, V.C. Duraiswami, R. Krishnapuram, B. |
description | We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets. |
doi_str_mv | 10.1109/TPAMI.2007.70776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_71664031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4359376</ieee_id><sourcerecordid>903623955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</originalsourceid><addsrcrecordid>eNqFkU1vEzEQQC1ERUPgjoSELCQolw1jj71eH6O2gYogEC1ny-vYYct-FHv3wL-v00RF6qHIh7HlN-MZP0JeMVgwBvrj1ffl14sFB1ALBUqVT8iMadQFStRPyQxYyYuq4tUxeZ7SNQATEvAZOWaVlKABZuTLkq5sGumy3Q6xGX91NAyRrr2NfdNvqaU_bP97t1tNvRuboachDh1d27j1xaWzradndrT00o_pBTkKtk3-5SHOyc_V-dXp52L97dPF6XJdOKFgLGq0VjkB0taBM4WVRybqunToEDwG5pB7q7l2sPFcAGyYwGAD8BzzAefkZF_3Jg5_Jp9G0zXJ-ba1vR-mZDRgyVFLmcn3j5KKlaUAZP8FUQgumVYZ_PAoyErFELgSIqNvH6DXwxT7_DOmyv1J5HnNCewhF4eUog_mJjadjX8NA7NzbO4cm51jc-c4p7w51J3qzm_-JRykZuDdAbApGwrR9q5J9xwH1JWE3dCv91zjvb-_Fig15mduAeL_s7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862353232</pqid></control><display><type>article</type><title>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</title><source>IEEE Electronic Library (IEL)</source><creator>Raykar, V.C. ; Duraiswami, R. ; Krishnapuram, B.</creator><creatorcontrib>Raykar, V.C. ; Duraiswami, R. ; Krishnapuram, B.</creatorcontrib><description>We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2007.70776</identifier><identifier>PMID: 18550900</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation algorithms ; Artificial Intelligence ; Collaboration ; Computational complexity ; Computer science; control theory; systems ; Computer Simulation ; Computer systems and distributed systems. User interface ; Databases, Factual ; Exact sciences and technology ; Filtering ; Filtering algorithms ; Information retrieval ; Information Storage and Retrieval - methods ; Large-scale systems ; Learning ; Likelihood Functions ; Machine learning ; Mathematical analysis ; Mathematical models ; Microeconomics ; Models, Statistical ; Pattern Recognition, Automated - methods ; Ranking ; Search engines ; Software ; Statistics ; Training ; Training data</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2008-07, Vol.30 (7), p.1158-1170</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</citedby><cites>FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4359376$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4359376$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20398501$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18550900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raykar, V.C.</creatorcontrib><creatorcontrib>Duraiswami, R.</creatorcontrib><creatorcontrib>Krishnapuram, B.</creatorcontrib><title>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Artificial Intelligence</subject><subject>Collaboration</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Databases, Factual</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Large-scale systems</subject><subject>Learning</subject><subject>Likelihood Functions</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microeconomics</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Ranking</subject><subject>Search engines</subject><subject>Software</subject><subject>Statistics</subject><subject>Training</subject><subject>Training data</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQQC1ERUPgjoSELCQolw1jj71eH6O2gYogEC1ny-vYYct-FHv3wL-v00RF6qHIh7HlN-MZP0JeMVgwBvrj1ffl14sFB1ALBUqVT8iMadQFStRPyQxYyYuq4tUxeZ7SNQATEvAZOWaVlKABZuTLkq5sGumy3Q6xGX91NAyRrr2NfdNvqaU_bP97t1tNvRuboachDh1d27j1xaWzradndrT00o_pBTkKtk3-5SHOyc_V-dXp52L97dPF6XJdOKFgLGq0VjkB0taBM4WVRybqunToEDwG5pB7q7l2sPFcAGyYwGAD8BzzAefkZF_3Jg5_Jp9G0zXJ-ba1vR-mZDRgyVFLmcn3j5KKlaUAZP8FUQgumVYZ_PAoyErFELgSIqNvH6DXwxT7_DOmyv1J5HnNCewhF4eUog_mJjadjX8NA7NzbO4cm51jc-c4p7w51J3qzm_-JRykZuDdAbApGwrR9q5J9xwH1JWE3dCv91zjvb-_Fig15mduAeL_s7A</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Raykar, V.C.</creator><creator>Duraiswami, R.</creator><creator>Krishnapuram, B.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</title><author>Raykar, V.C. ; Duraiswami, R. ; Krishnapuram, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b3aa7c405abf21738e314bb6c3c30e3f1c32ea929c0de2400d143faf021430d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Artificial Intelligence</topic><topic>Collaboration</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Databases, Factual</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Large-scale systems</topic><topic>Learning</topic><topic>Likelihood Functions</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microeconomics</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Ranking</topic><topic>Search engines</topic><topic>Software</topic><topic>Statistics</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raykar, V.C.</creatorcontrib><creatorcontrib>Duraiswami, R.</creatorcontrib><creatorcontrib>Krishnapuram, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raykar, V.C.</au><au>Duraiswami, R.</au><au>Krishnapuram, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>30</volume><issue>7</issue><spage>1158</spage><epage>1170</epage><pages>1158-1170</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We consider the problem of learning a ranking function that maximizes a generalization of the Wilcoxon-Mann-Whitney statistic on the training data. Relying on an e-accurate approximation for the error function, we reduce the computational complexity of each iteration of a conjugate gradient algorithm for learning ranking functions from O(m 2 ) to O(m), where m is the number of training samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy, when the algorithms are trained on the same data. However, since it is several orders of magnitude faster than the current state-of-the-art approaches, it is able to leverage much larger training data sets.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>18550900</pmid><doi>10.1109/TPAMI.2007.70776</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2008-07, Vol.30 (7), p.1158-1170 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_71664031 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Approximation algorithms Artificial Intelligence Collaboration Computational complexity Computer science control theory systems Computer Simulation Computer systems and distributed systems. User interface Databases, Factual Exact sciences and technology Filtering Filtering algorithms Information retrieval Information Storage and Retrieval - methods Large-scale systems Learning Likelihood Functions Machine learning Mathematical analysis Mathematical models Microeconomics Models, Statistical Pattern Recognition, Automated - methods Ranking Search engines Software Statistics Training Training data |
title | A Fast Algorithm for Learning a Ranking Function from Large-Scale Data Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Algorithm%20for%20Learning%20a%20Ranking%20Function%20from%20Large-Scale%20Data%20Sets&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Raykar,%20V.C.&rft.date=2008-07-01&rft.volume=30&rft.issue=7&rft.spage=1158&rft.epage=1170&rft.pages=1158-1170&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2007.70776&rft_dat=%3Cproquest_RIE%3E903623955%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862353232&rft_id=info:pmid/18550900&rft_ieee_id=4359376&rfr_iscdi=true |