Frequentist and Bayesian approaches to prevalence estimation using examples from Johne's disease

Although frequentist approaches to prevalence estimation are simple to apply, there are circumstances where it is difficult to satisfy assumptions of asymptotic normality and nonsensical point estimates (greater than 1 or less than 0) may result. This is particularly true when sample sizes are small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal health research reviews 2008-06, Vol.9 (1), p.1-23
Hauptverfasser: McV. Messam, Locksley L., Branscum, Adam J., Collins, Michael T., Gardner, Ian A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 1
container_title Animal health research reviews
container_volume 9
creator McV. Messam, Locksley L.
Branscum, Adam J.
Collins, Michael T.
Gardner, Ian A.
description Although frequentist approaches to prevalence estimation are simple to apply, there are circumstances where it is difficult to satisfy assumptions of asymptotic normality and nonsensical point estimates (greater than 1 or less than 0) may result. This is particularly true when sample sizes are small, test prevalences are low and imperfect sensitivity and specificity of diagnostic tests need to be incorporated into calculations of true prevalence. Bayesian approaches offer several advantages including direct computation of range-respecting interval estimates (e.g. intervals between 0 and 1 for prevalence) without the requirement of transformations or large-sample approximations. They also allow direct probabilistic interpretation, and the flexibility to model in a straightforward manner the probability of zero prevalence. In this review, we present frequentist and Bayesian methods for animal- and herd-level true prevalence estimation based on individual and pooled samples. We provide statistical methods for detecting differences between population prevalence and frequentist methods for sample size and power calculations. All examples are motivated using Mycobacterium avium subspecies paratuberculosis infection and we provide WinBUGS code for all examples of Bayesian estimation.
doi_str_mv 10.1017/S1466252307001314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71655309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1466252307001314</cupid><sourcerecordid>71655309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-91ce5548586723c45ee9b5a6e3076c1ba49f23cfbde0bfb0240ebd351f0b9ba03</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EouXxAWyQxQJWAb-TLKGiPFSJBbAOdnLTpkqcYCeI_j2uWgkEYmXLPnfuzCB0QsklJTS-eqZCKSYZJzEhlFOxg8ZUxDJiSord9V2paP0_QgfeLwMTs0TsoxFNuFAsTcbobergfQDbV77H2hb4Rq_AV9pi3XWu1fkCPO5b3Dn40DXYHDD4vmp0X7UWD76ycwyfuunqwJWubfBju7Bw4XFRedAejtBeqWsPx9vzEL1Ob18m99Hs6e5hcj2Lch48RSnNQUqRyETFjOdCAqRGagUhm8qp0SItw3tpCiCmNIQJAqbgkpbEpEYTfojON7rBdQjk-6ypfA51rS20g89iqqTkJA3g2S9w2Q7OBm8ZTWOhaJywANENlLvWewdl1rkQ2q0ySrJ199mf7sPM6VZ4MA0U3xPbsgPAt6K6Ma4q5vBj9b-yX7Khjpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197461782</pqid></control><display><type>article</type><title>Frequentist and Bayesian approaches to prevalence estimation using examples from Johne's disease</title><source>MEDLINE</source><source>Cambridge Journals</source><creator>McV. Messam, Locksley L. ; Branscum, Adam J. ; Collins, Michael T. ; Gardner, Ian A.</creator><creatorcontrib>McV. Messam, Locksley L. ; Branscum, Adam J. ; Collins, Michael T. ; Gardner, Ian A.</creatorcontrib><description>Although frequentist approaches to prevalence estimation are simple to apply, there are circumstances where it is difficult to satisfy assumptions of asymptotic normality and nonsensical point estimates (greater than 1 or less than 0) may result. This is particularly true when sample sizes are small, test prevalences are low and imperfect sensitivity and specificity of diagnostic tests need to be incorporated into calculations of true prevalence. Bayesian approaches offer several advantages including direct computation of range-respecting interval estimates (e.g. intervals between 0 and 1 for prevalence) without the requirement of transformations or large-sample approximations. They also allow direct probabilistic interpretation, and the flexibility to model in a straightforward manner the probability of zero prevalence. In this review, we present frequentist and Bayesian methods for animal- and herd-level true prevalence estimation based on individual and pooled samples. We provide statistical methods for detecting differences between population prevalence and frequentist methods for sample size and power calculations. All examples are motivated using Mycobacterium avium subspecies paratuberculosis infection and we provide WinBUGS code for all examples of Bayesian estimation.</description><identifier>ISSN: 1466-2523</identifier><identifier>EISSN: 1475-2654</identifier><identifier>DOI: 10.1017/S1466252307001314</identifier><identifier>PMID: 18346298</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Animals ; Bayes Theorem ; Cattle ; Cattle Diseases - diagnosis ; Cattle Diseases - epidemiology ; Dairying ; Female ; Male ; Paratuberculosis - diagnosis ; Paratuberculosis - epidemiology ; Predictive Value of Tests ; Prevalence ; Sample Size ; Sensitivity and Specificity ; Statistical methods</subject><ispartof>Animal health research reviews, 2008-06, Vol.9 (1), p.1-23</ispartof><rights>Copyright © 2008 Cambridge University Press</rights><rights>Copyright © Cambridge University Press 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-91ce5548586723c45ee9b5a6e3076c1ba49f23cfbde0bfb0240ebd351f0b9ba03</citedby><cites>FETCH-LOGICAL-c3284-91ce5548586723c45ee9b5a6e3076c1ba49f23cfbde0bfb0240ebd351f0b9ba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1466252307001314/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18346298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McV. Messam, Locksley L.</creatorcontrib><creatorcontrib>Branscum, Adam J.</creatorcontrib><creatorcontrib>Collins, Michael T.</creatorcontrib><creatorcontrib>Gardner, Ian A.</creatorcontrib><title>Frequentist and Bayesian approaches to prevalence estimation using examples from Johne's disease</title><title>Animal health research reviews</title><addtitle>Anim Health Res Rev</addtitle><description>Although frequentist approaches to prevalence estimation are simple to apply, there are circumstances where it is difficult to satisfy assumptions of asymptotic normality and nonsensical point estimates (greater than 1 or less than 0) may result. This is particularly true when sample sizes are small, test prevalences are low and imperfect sensitivity and specificity of diagnostic tests need to be incorporated into calculations of true prevalence. Bayesian approaches offer several advantages including direct computation of range-respecting interval estimates (e.g. intervals between 0 and 1 for prevalence) without the requirement of transformations or large-sample approximations. They also allow direct probabilistic interpretation, and the flexibility to model in a straightforward manner the probability of zero prevalence. In this review, we present frequentist and Bayesian methods for animal- and herd-level true prevalence estimation based on individual and pooled samples. We provide statistical methods for detecting differences between population prevalence and frequentist methods for sample size and power calculations. All examples are motivated using Mycobacterium avium subspecies paratuberculosis infection and we provide WinBUGS code for all examples of Bayesian estimation.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Cattle</subject><subject>Cattle Diseases - diagnosis</subject><subject>Cattle Diseases - epidemiology</subject><subject>Dairying</subject><subject>Female</subject><subject>Male</subject><subject>Paratuberculosis - diagnosis</subject><subject>Paratuberculosis - epidemiology</subject><subject>Predictive Value of Tests</subject><subject>Prevalence</subject><subject>Sample Size</subject><subject>Sensitivity and Specificity</subject><subject>Statistical methods</subject><issn>1466-2523</issn><issn>1475-2654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAURC0EouXxAWyQxQJWAb-TLKGiPFSJBbAOdnLTpkqcYCeI_j2uWgkEYmXLPnfuzCB0QsklJTS-eqZCKSYZJzEhlFOxg8ZUxDJiSord9V2paP0_QgfeLwMTs0TsoxFNuFAsTcbobergfQDbV77H2hb4Rq_AV9pi3XWu1fkCPO5b3Dn40DXYHDD4vmp0X7UWD76ycwyfuunqwJWubfBju7Bw4XFRedAejtBeqWsPx9vzEL1Ob18m99Hs6e5hcj2Lch48RSnNQUqRyETFjOdCAqRGagUhm8qp0SItw3tpCiCmNIQJAqbgkpbEpEYTfojON7rBdQjk-6ypfA51rS20g89iqqTkJA3g2S9w2Q7OBm8ZTWOhaJywANENlLvWewdl1rkQ2q0ySrJ199mf7sPM6VZ4MA0U3xPbsgPAt6K6Ma4q5vBj9b-yX7Khjpc</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>McV. Messam, Locksley L.</creator><creator>Branscum, Adam J.</creator><creator>Collins, Michael T.</creator><creator>Gardner, Ian A.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>200806</creationdate><title>Frequentist and Bayesian approaches to prevalence estimation using examples from Johne's disease</title><author>McV. Messam, Locksley L. ; Branscum, Adam J. ; Collins, Michael T. ; Gardner, Ian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-91ce5548586723c45ee9b5a6e3076c1ba49f23cfbde0bfb0240ebd351f0b9ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Cattle</topic><topic>Cattle Diseases - diagnosis</topic><topic>Cattle Diseases - epidemiology</topic><topic>Dairying</topic><topic>Female</topic><topic>Male</topic><topic>Paratuberculosis - diagnosis</topic><topic>Paratuberculosis - epidemiology</topic><topic>Predictive Value of Tests</topic><topic>Prevalence</topic><topic>Sample Size</topic><topic>Sensitivity and Specificity</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McV. Messam, Locksley L.</creatorcontrib><creatorcontrib>Branscum, Adam J.</creatorcontrib><creatorcontrib>Collins, Michael T.</creatorcontrib><creatorcontrib>Gardner, Ian A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Animal health research reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McV. Messam, Locksley L.</au><au>Branscum, Adam J.</au><au>Collins, Michael T.</au><au>Gardner, Ian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequentist and Bayesian approaches to prevalence estimation using examples from Johne's disease</atitle><jtitle>Animal health research reviews</jtitle><addtitle>Anim Health Res Rev</addtitle><date>2008-06</date><risdate>2008</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>1466-2523</issn><eissn>1475-2654</eissn><abstract>Although frequentist approaches to prevalence estimation are simple to apply, there are circumstances where it is difficult to satisfy assumptions of asymptotic normality and nonsensical point estimates (greater than 1 or less than 0) may result. This is particularly true when sample sizes are small, test prevalences are low and imperfect sensitivity and specificity of diagnostic tests need to be incorporated into calculations of true prevalence. Bayesian approaches offer several advantages including direct computation of range-respecting interval estimates (e.g. intervals between 0 and 1 for prevalence) without the requirement of transformations or large-sample approximations. They also allow direct probabilistic interpretation, and the flexibility to model in a straightforward manner the probability of zero prevalence. In this review, we present frequentist and Bayesian methods for animal- and herd-level true prevalence estimation based on individual and pooled samples. We provide statistical methods for detecting differences between population prevalence and frequentist methods for sample size and power calculations. All examples are motivated using Mycobacterium avium subspecies paratuberculosis infection and we provide WinBUGS code for all examples of Bayesian estimation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>18346298</pmid><doi>10.1017/S1466252307001314</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-2523
ispartof Animal health research reviews, 2008-06, Vol.9 (1), p.1-23
issn 1466-2523
1475-2654
language eng
recordid cdi_proquest_miscellaneous_71655309
source MEDLINE; Cambridge Journals
subjects Animals
Bayes Theorem
Cattle
Cattle Diseases - diagnosis
Cattle Diseases - epidemiology
Dairying
Female
Male
Paratuberculosis - diagnosis
Paratuberculosis - epidemiology
Predictive Value of Tests
Prevalence
Sample Size
Sensitivity and Specificity
Statistical methods
title Frequentist and Bayesian approaches to prevalence estimation using examples from Johne's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequentist%20and%20Bayesian%20approaches%20to%20prevalence%20estimation%20using%20examples%20from%20Johne's%20disease&rft.jtitle=Animal%20health%20research%20reviews&rft.au=McV.%20Messam,%20Locksley%20L.&rft.date=2008-06&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=1466-2523&rft.eissn=1475-2654&rft_id=info:doi/10.1017/S1466252307001314&rft_dat=%3Cproquest_cross%3E71655309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197461782&rft_id=info:pmid/18346298&rft_cupid=10_1017_S1466252307001314&rfr_iscdi=true