Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation

In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2008-06, Vol.123 (6), p.4118-4126
Hauptverfasser: Hanford, Amanda D., O'Connor, Patrick D., Anderson, James B., Long, Lyle N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4126
container_issue 6
container_start_page 4118
container_title The Journal of the Acoustical Society of America
container_volume 123
creator Hanford, Amanda D.
O'Connor, Patrick D.
Anderson, James B.
Long, Lyle N.
description In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.
doi_str_mv 10.1121/1.2912831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71651213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71651213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</originalsourceid><addsrcrecordid>eNp1kcuKFDEUhoMoTs_owheQbBRc1JiTW1dcCNI4KoyooOsinaQkkqq0OSlwHsG3NtNdzKxc5XK-84d8h5BnwC4BOLyGS26A9wIekA0ozrpecfmQbBhj0Emj9Rk5R_zVjqoX5jE5g16JrdBiQ_5-LcFHV-P8k9o95nKoMc_Uzp76iIdQ8PYY243LC9bokO5vWqkEVynGaUn22PA5zzXQnS0pv6HfFjvXZTqmuGQRo7OJTtmHhHTMpW1TcK210BKS_XOMeEIejTZheLquF-TH1fvvu4_d9ZcPn3bvrjsndF87a4x0W2-EBK8Et0oarkCbUYq9ZaIPUplWZxy0hZGNrrnQdpReKi0ceHFBXp5yDyX_XgLWYYroQkp2Du2Lwxa0alJFA1-dQFcyYgnjcChxsuVmADbceh9gWL039vkauuyn4O_JVXQDXqyAxSZjLHZ2Ee84zqRgPdeNe3vi0MV69PL_V-9HN9yNTvwDBJGheQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71651213</pqid></control><display><type>article</type><title>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><source>Alma/SFX Local Collection</source><creator>Hanford, Amanda D. ; O'Connor, Patrick D. ; Anderson, James B. ; Long, Lyle N.</creator><creatorcontrib>Hanford, Amanda D. ; O'Connor, Patrick D. ; Anderson, James B. ; Long, Lyle N.</creatorcontrib><description>In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2912831</identifier><identifier>PMID: 18537363</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Absorption ; Acoustics ; Aeroacoustics, atmospheric sound ; Auditory Perception ; Computer Simulation ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Models, Biological ; Monte Carlo Method ; Oscillometry ; Physics ; Quantum Theory ; Rotation ; Thermodynamics ; Vibration ; Viscosity</subject><ispartof>The Journal of the Acoustical Society of America, 2008-06, Vol.123 (6), p.4118-4126</ispartof><rights>2008 Acoustical Society of America</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</citedby><cites>FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.2912831$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20430826$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18537363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanford, Amanda D.</creatorcontrib><creatorcontrib>O'Connor, Patrick D.</creatorcontrib><creatorcontrib>Anderson, James B.</creatorcontrib><creatorcontrib>Long, Lyle N.</creatorcontrib><title>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.</description><subject>Absorption</subject><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Auditory Perception</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Oscillometry</subject><subject>Physics</subject><subject>Quantum Theory</subject><subject>Rotation</subject><subject>Thermodynamics</subject><subject>Vibration</subject><subject>Viscosity</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcuKFDEUhoMoTs_owheQbBRc1JiTW1dcCNI4KoyooOsinaQkkqq0OSlwHsG3NtNdzKxc5XK-84d8h5BnwC4BOLyGS26A9wIekA0ozrpecfmQbBhj0Emj9Rk5R_zVjqoX5jE5g16JrdBiQ_5-LcFHV-P8k9o95nKoMc_Uzp76iIdQ8PYY243LC9bokO5vWqkEVynGaUn22PA5zzXQnS0pv6HfFjvXZTqmuGQRo7OJTtmHhHTMpW1TcK210BKS_XOMeEIejTZheLquF-TH1fvvu4_d9ZcPn3bvrjsndF87a4x0W2-EBK8Et0oarkCbUYq9ZaIPUplWZxy0hZGNrrnQdpReKi0ceHFBXp5yDyX_XgLWYYroQkp2Du2Lwxa0alJFA1-dQFcyYgnjcChxsuVmADbceh9gWL039vkauuyn4O_JVXQDXqyAxSZjLHZ2Ee84zqRgPdeNe3vi0MV69PL_V-9HN9yNTvwDBJGheQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Hanford, Amanda D.</creator><creator>O'Connor, Patrick D.</creator><creator>Anderson, James B.</creator><creator>Long, Lyle N.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080601</creationdate><title>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</title><author>Hanford, Amanda D. ; O'Connor, Patrick D. ; Anderson, James B. ; Long, Lyle N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Absorption</topic><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Auditory Perception</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Oscillometry</topic><topic>Physics</topic><topic>Quantum Theory</topic><topic>Rotation</topic><topic>Thermodynamics</topic><topic>Vibration</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanford, Amanda D.</creatorcontrib><creatorcontrib>O'Connor, Patrick D.</creatorcontrib><creatorcontrib>Anderson, James B.</creatorcontrib><creatorcontrib>Long, Lyle N.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanford, Amanda D.</au><au>O'Connor, Patrick D.</au><au>Anderson, James B.</au><au>Long, Lyle N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>123</volume><issue>6</issue><spage>4118</spage><epage>4126</epage><pages>4118-4126</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>18537363</pmid><doi>10.1121/1.2912831</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2008-06, Vol.123 (6), p.4118-4126
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_71651213
source MEDLINE; AIP Journals Complete; Acoustical Society of America (AIP); Alma/SFX Local Collection
subjects Absorption
Acoustics
Aeroacoustics, atmospheric sound
Auditory Perception
Computer Simulation
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Models, Biological
Monte Carlo Method
Oscillometry
Physics
Quantum Theory
Rotation
Thermodynamics
Vibration
Viscosity
title Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20absorption%20and%20dispersion%20in%20acoustics%20by%20direct%20simulation%20Monte%20Carlo:%20Quantum%20and%20classical%20models%20for%20molecular%20relaxation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Hanford,%20Amanda%20D.&rft.date=2008-06-01&rft.volume=123&rft.issue=6&rft.spage=4118&rft.epage=4126&rft.pages=4118-4126&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2912831&rft_dat=%3Cproquest_cross%3E71651213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71651213&rft_id=info:pmid/18537363&rfr_iscdi=true