Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation
In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ra...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2008-06, Vol.123 (6), p.4118-4126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4126 |
---|---|
container_issue | 6 |
container_start_page | 4118 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 123 |
creator | Hanford, Amanda D. O'Connor, Patrick D. Anderson, James B. Long, Lyle N. |
description | In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows. |
doi_str_mv | 10.1121/1.2912831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71651213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71651213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</originalsourceid><addsrcrecordid>eNp1kcuKFDEUhoMoTs_owheQbBRc1JiTW1dcCNI4KoyooOsinaQkkqq0OSlwHsG3NtNdzKxc5XK-84d8h5BnwC4BOLyGS26A9wIekA0ozrpecfmQbBhj0Emj9Rk5R_zVjqoX5jE5g16JrdBiQ_5-LcFHV-P8k9o95nKoMc_Uzp76iIdQ8PYY243LC9bokO5vWqkEVynGaUn22PA5zzXQnS0pv6HfFjvXZTqmuGQRo7OJTtmHhHTMpW1TcK210BKS_XOMeEIejTZheLquF-TH1fvvu4_d9ZcPn3bvrjsndF87a4x0W2-EBK8Et0oarkCbUYq9ZaIPUplWZxy0hZGNrrnQdpReKi0ceHFBXp5yDyX_XgLWYYroQkp2Du2Lwxa0alJFA1-dQFcyYgnjcChxsuVmADbceh9gWL039vkauuyn4O_JVXQDXqyAxSZjLHZ2Ee84zqRgPdeNe3vi0MV69PL_V-9HN9yNTvwDBJGheQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71651213</pqid></control><display><type>article</type><title>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><source>Alma/SFX Local Collection</source><creator>Hanford, Amanda D. ; O'Connor, Patrick D. ; Anderson, James B. ; Long, Lyle N.</creator><creatorcontrib>Hanford, Amanda D. ; O'Connor, Patrick D. ; Anderson, James B. ; Long, Lyle N.</creatorcontrib><description>In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2912831</identifier><identifier>PMID: 18537363</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Absorption ; Acoustics ; Aeroacoustics, atmospheric sound ; Auditory Perception ; Computer Simulation ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Models, Biological ; Monte Carlo Method ; Oscillometry ; Physics ; Quantum Theory ; Rotation ; Thermodynamics ; Vibration ; Viscosity</subject><ispartof>The Journal of the Acoustical Society of America, 2008-06, Vol.123 (6), p.4118-4126</ispartof><rights>2008 Acoustical Society of America</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</citedby><cites>FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.2912831$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20430826$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18537363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanford, Amanda D.</creatorcontrib><creatorcontrib>O'Connor, Patrick D.</creatorcontrib><creatorcontrib>Anderson, James B.</creatorcontrib><creatorcontrib>Long, Lyle N.</creatorcontrib><title>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.</description><subject>Absorption</subject><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Auditory Perception</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Oscillometry</subject><subject>Physics</subject><subject>Quantum Theory</subject><subject>Rotation</subject><subject>Thermodynamics</subject><subject>Vibration</subject><subject>Viscosity</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcuKFDEUhoMoTs_owheQbBRc1JiTW1dcCNI4KoyooOsinaQkkqq0OSlwHsG3NtNdzKxc5XK-84d8h5BnwC4BOLyGS26A9wIekA0ozrpecfmQbBhj0Emj9Rk5R_zVjqoX5jE5g16JrdBiQ_5-LcFHV-P8k9o95nKoMc_Uzp76iIdQ8PYY243LC9bokO5vWqkEVynGaUn22PA5zzXQnS0pv6HfFjvXZTqmuGQRo7OJTtmHhHTMpW1TcK210BKS_XOMeEIejTZheLquF-TH1fvvu4_d9ZcPn3bvrjsndF87a4x0W2-EBK8Et0oarkCbUYq9ZaIPUplWZxy0hZGNrrnQdpReKi0ceHFBXp5yDyX_XgLWYYroQkp2Du2Lwxa0alJFA1-dQFcyYgnjcChxsuVmADbceh9gWL039vkauuyn4O_JVXQDXqyAxSZjLHZ2Ee84zqRgPdeNe3vi0MV69PL_V-9HN9yNTvwDBJGheQ</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Hanford, Amanda D.</creator><creator>O'Connor, Patrick D.</creator><creator>Anderson, James B.</creator><creator>Long, Lyle N.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080601</creationdate><title>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</title><author>Hanford, Amanda D. ; O'Connor, Patrick D. ; Anderson, James B. ; Long, Lyle N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a994c7d9341d532a54925169f43ba038e459c7d0216a1f0fc8526af4d4563c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Absorption</topic><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Auditory Perception</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Oscillometry</topic><topic>Physics</topic><topic>Quantum Theory</topic><topic>Rotation</topic><topic>Thermodynamics</topic><topic>Vibration</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanford, Amanda D.</creatorcontrib><creatorcontrib>O'Connor, Patrick D.</creatorcontrib><creatorcontrib>Anderson, James B.</creatorcontrib><creatorcontrib>Long, Lyle N.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanford, Amanda D.</au><au>O'Connor, Patrick D.</au><au>Anderson, James B.</au><au>Long, Lyle N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>123</volume><issue>6</issue><spage>4118</spage><epage>4126</epage><pages>4118-4126</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>18537363</pmid><doi>10.1121/1.2912831</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2008-06, Vol.123 (6), p.4118-4126 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_71651213 |
source | MEDLINE; AIP Journals Complete; Acoustical Society of America (AIP); Alma/SFX Local Collection |
subjects | Absorption Acoustics Aeroacoustics, atmospheric sound Auditory Perception Computer Simulation Exact sciences and technology Fundamental areas of phenomenology (including applications) Models, Biological Monte Carlo Method Oscillometry Physics Quantum Theory Rotation Thermodynamics Vibration Viscosity |
title | Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20absorption%20and%20dispersion%20in%20acoustics%20by%20direct%20simulation%20Monte%20Carlo:%20Quantum%20and%20classical%20models%20for%20molecular%20relaxation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Hanford,%20Amanda%20D.&rft.date=2008-06-01&rft.volume=123&rft.issue=6&rft.spage=4118&rft.epage=4126&rft.pages=4118-4126&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2912831&rft_dat=%3Cproquest_cross%3E71651213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71651213&rft_id=info:pmid/18537363&rfr_iscdi=true |