The PDZ Protein Mupp1 Promotes Gi Coupling and Signaling of the Mt1 Melatonin Receptor

Intracellular signaling events are often organized around PDZ (PSD-95/Drosophila Disc large/ZO-1 homology) domain-containing scaffolding proteins. The ubiquitously expressed multi-PDZ protein MUPP1, which is composed of 13 PDZ domains, has been shown to interact with multiple viral and cellular prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-06, Vol.283 (24), p.16762-16771
Hauptverfasser: Guillaume, Jean-Luc, Daulat, Avais M., Maurice, Pascal, Levoye, Angélique, Migaud, Martine, Brydon, Lena, Malpaux, Benoît, Borg-Capra, Catherine, Jockers, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracellular signaling events are often organized around PDZ (PSD-95/Drosophila Disc large/ZO-1 homology) domain-containing scaffolding proteins. The ubiquitously expressed multi-PDZ protein MUPP1, which is composed of 13 PDZ domains, has been shown to interact with multiple viral and cellular proteins and to play important roles in receptor targeting and trafficking. In this study, we show that MUPP1 binds to the G protein-coupled MT1 melatonin receptor and directly regulates its Gi-dependent signal transduction. Structural determinants involved in this interaction are the PDZ10 domain of MUPP1 and the valine of the canonical class III PDZ domain binding motif DSV of the MT1 carboxyl terminus. This high affinity interaction (Kd ∼ 4 nm), which is independent of MT1 activation, occurs in the ovine pars tuberalis of the pituitary expressing both proteins endogenously. Although the disruption of the MT1/MUPP1 interaction has no effect on the subcellular localization, trafficking, or degradation of MT1, it destabilizes the interaction between MT1 and Gi and abolishes Gi-mediated signaling of MT1. Our findings highlight a previously unappreciated role of PDZ proteins in promoting G protein coupling to receptors.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M802069200