Non-Faradaic electrochemical activation of catalysis
The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2008-05, Vol.128 (18), p.182506-182506-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182506-13 |
---|---|
container_issue | 18 |
container_start_page | 182506 |
container_title | The Journal of chemical physics |
container_volume | 128 |
creator | Vayenas, Costas G. Koutsodontis, Costas G. |
description | The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g.,
O
δ
−
,
Na
δ
+
) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed. |
doi_str_mv | 10.1063/1.2824944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71640543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71640543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMotlYXvoDMSnAxNTd_M9kIUqwKRTe6DmmSwchMU5OM0Ld3tCOuXN3N4fDdg9A54DlgQa9hTmrCJGMHaAq4lmUlJD5EU4wJlFJgMUEnKb1jjKEi7BhNoOaUVBKmiD2FTbnUUVvtTeFaZ3IM5s113ui20Cb7T5192BShKYzOut0ln07RUaPb5M7GO0Ovy7uXxUO5er5_XNyuSkMrnksgopZCUGfosE8AI-vKcsMtB-saKrBpJKd1TShQZtdcCysYd41jmgAngs7Q5d67jeGjdymrzifj2lZvXOiTqkAwzBkdwKs9aGJIKbpGbaPvdNwpwOo7kQI1JhrYi1Harztn_8ixyQDc7IFkfP55_n_bUE_91lNjPfoFjAd0Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71640543</pqid></control><display><type>article</type><title>Non-Faradaic electrochemical activation of catalysis</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Vayenas, Costas G. ; Koutsodontis, Costas G.</creator><creatorcontrib>Vayenas, Costas G. ; Koutsodontis, Costas G.</creatorcontrib><description>The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g.,
O
δ
−
,
Na
δ
+
) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2824944</identifier><identifier>PMID: 18532791</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Carbon - chemistry ; Catalysis ; Electrochemistry ; Electrodes ; Electrolytes - chemistry ; Gases - chemistry ; Isomerism ; Kinetics ; Metals - chemistry ; Oxidation-Reduction ; Oxygen - chemistry ; Surface Properties ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2008-05, Vol.128 (18), p.182506-182506-13</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</citedby><cites>FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18532791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vayenas, Costas G.</creatorcontrib><creatorcontrib>Koutsodontis, Costas G.</creatorcontrib><title>Non-Faradaic electrochemical activation of catalysis</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g.,
O
δ
−
,
Na
δ
+
) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed.</description><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes - chemistry</subject><subject>Gases - chemistry</subject><subject>Isomerism</subject><subject>Kinetics</subject><subject>Metals - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>Surface Properties</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1KAzEURoMotlYXvoDMSnAxNTd_M9kIUqwKRTe6DmmSwchMU5OM0Ld3tCOuXN3N4fDdg9A54DlgQa9hTmrCJGMHaAq4lmUlJD5EU4wJlFJgMUEnKb1jjKEi7BhNoOaUVBKmiD2FTbnUUVvtTeFaZ3IM5s113ui20Cb7T5192BShKYzOut0ln07RUaPb5M7GO0Ovy7uXxUO5er5_XNyuSkMrnksgopZCUGfosE8AI-vKcsMtB-saKrBpJKd1TShQZtdcCysYd41jmgAngs7Q5d67jeGjdymrzifj2lZvXOiTqkAwzBkdwKs9aGJIKbpGbaPvdNwpwOo7kQI1JhrYi1Harztn_8ixyQDc7IFkfP55_n_bUE_91lNjPfoFjAd0Ew</recordid><startdate>20080514</startdate><enddate>20080514</enddate><creator>Vayenas, Costas G.</creator><creator>Koutsodontis, Costas G.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080514</creationdate><title>Non-Faradaic electrochemical activation of catalysis</title><author>Vayenas, Costas G. ; Koutsodontis, Costas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes - chemistry</topic><topic>Gases - chemistry</topic><topic>Isomerism</topic><topic>Kinetics</topic><topic>Metals - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>Surface Properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vayenas, Costas G.</creatorcontrib><creatorcontrib>Koutsodontis, Costas G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vayenas, Costas G.</au><au>Koutsodontis, Costas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Faradaic electrochemical activation of catalysis</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2008-05-14</date><risdate>2008</risdate><volume>128</volume><issue>18</issue><spage>182506</spage><epage>182506-13</epage><pages>182506-182506-13</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g.,
O
δ
−
,
Na
δ
+
) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>18532791</pmid><doi>10.1063/1.2824944</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2008-05, Vol.128 (18), p.182506-182506-13 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_71640543 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Carbon - chemistry Catalysis Electrochemistry Electrodes Electrolytes - chemistry Gases - chemistry Isomerism Kinetics Metals - chemistry Oxidation-Reduction Oxygen - chemistry Surface Properties Thermodynamics |
title | Non-Faradaic electrochemical activation of catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Faradaic%20electrochemical%20activation%20of%20catalysis&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Vayenas,%20Costas%20G.&rft.date=2008-05-14&rft.volume=128&rft.issue=18&rft.spage=182506&rft.epage=182506-13&rft.pages=182506-182506-13&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2824944&rft_dat=%3Cproquest_cross%3E71640543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71640543&rft_id=info:pmid/18532791&rfr_iscdi=true |