Non-Faradaic electrochemical activation of catalysis

The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2008-05, Vol.128 (18), p.182506-182506-13
Hauptverfasser: Vayenas, Costas G., Koutsodontis, Costas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182506-13
container_issue 18
container_start_page 182506
container_title The Journal of chemical physics
container_volume 128
creator Vayenas, Costas G.
Koutsodontis, Costas G.
description The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g., O δ − , Na δ + ) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed.
doi_str_mv 10.1063/1.2824944
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71640543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71640543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMotlYXvoDMSnAxNTd_M9kIUqwKRTe6DmmSwchMU5OM0Ld3tCOuXN3N4fDdg9A54DlgQa9hTmrCJGMHaAq4lmUlJD5EU4wJlFJgMUEnKb1jjKEi7BhNoOaUVBKmiD2FTbnUUVvtTeFaZ3IM5s113ui20Cb7T5192BShKYzOut0ln07RUaPb5M7GO0Ovy7uXxUO5er5_XNyuSkMrnksgopZCUGfosE8AI-vKcsMtB-saKrBpJKd1TShQZtdcCysYd41jmgAngs7Q5d67jeGjdymrzifj2lZvXOiTqkAwzBkdwKs9aGJIKbpGbaPvdNwpwOo7kQI1JhrYi1Harztn_8ixyQDc7IFkfP55_n_bUE_91lNjPfoFjAd0Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71640543</pqid></control><display><type>article</type><title>Non-Faradaic electrochemical activation of catalysis</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Vayenas, Costas G. ; Koutsodontis, Costas G.</creator><creatorcontrib>Vayenas, Costas G. ; Koutsodontis, Costas G.</creatorcontrib><description>The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g., O δ − , Na δ + ) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2824944</identifier><identifier>PMID: 18532791</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Carbon - chemistry ; Catalysis ; Electrochemistry ; Electrodes ; Electrolytes - chemistry ; Gases - chemistry ; Isomerism ; Kinetics ; Metals - chemistry ; Oxidation-Reduction ; Oxygen - chemistry ; Surface Properties ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2008-05, Vol.128 (18), p.182506-182506-13</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</citedby><cites>FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18532791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vayenas, Costas G.</creatorcontrib><creatorcontrib>Koutsodontis, Costas G.</creatorcontrib><title>Non-Faradaic electrochemical activation of catalysis</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g., O δ − , Na δ + ) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed.</description><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes - chemistry</subject><subject>Gases - chemistry</subject><subject>Isomerism</subject><subject>Kinetics</subject><subject>Metals - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>Surface Properties</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1KAzEURoMotlYXvoDMSnAxNTd_M9kIUqwKRTe6DmmSwchMU5OM0Ld3tCOuXN3N4fDdg9A54DlgQa9hTmrCJGMHaAq4lmUlJD5EU4wJlFJgMUEnKb1jjKEi7BhNoOaUVBKmiD2FTbnUUVvtTeFaZ3IM5s113ui20Cb7T5192BShKYzOut0ln07RUaPb5M7GO0Ovy7uXxUO5er5_XNyuSkMrnksgopZCUGfosE8AI-vKcsMtB-saKrBpJKd1TShQZtdcCysYd41jmgAngs7Q5d67jeGjdymrzifj2lZvXOiTqkAwzBkdwKs9aGJIKbpGbaPvdNwpwOo7kQI1JhrYi1Harztn_8ixyQDc7IFkfP55_n_bUE_91lNjPfoFjAd0Ew</recordid><startdate>20080514</startdate><enddate>20080514</enddate><creator>Vayenas, Costas G.</creator><creator>Koutsodontis, Costas G.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080514</creationdate><title>Non-Faradaic electrochemical activation of catalysis</title><author>Vayenas, Costas G. ; Koutsodontis, Costas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-12689663ec32826142b7d5c5d51def360cf9538823134db5a6d645efe4a215263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes - chemistry</topic><topic>Gases - chemistry</topic><topic>Isomerism</topic><topic>Kinetics</topic><topic>Metals - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>Surface Properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vayenas, Costas G.</creatorcontrib><creatorcontrib>Koutsodontis, Costas G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vayenas, Costas G.</au><au>Koutsodontis, Costas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Faradaic electrochemical activation of catalysis</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2008-05-14</date><risdate>2008</risdate><volume>128</volume><issue>18</issue><spage>182506</spage><epage>182506-13</epage><pages>182506-182506-13</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The use of fuel cells for carrying out oxidation reactions with cogeneration of electrical power and chemicals led, upon cofeeding oxygen and fuel at the anode, to the discovery of the effect of non-Faradaic electrochemical modification of catalytic activity or electrochemical promotion of catalysis. This phenomenon has been studied already for more than 70 catalytic reactions, including oxidations, reductions and isomerizations and using a variety of metal catalysts, and solid electrolytes. In this work we summarize the main features of electrochemical promotion and discuss critically its currently accepted sacrificial promoter mechanism which involves electrochemically controlled migration (spillover-backspillover) of promoting species from the electrolyte to the catalytically active metal-gas interface. It is shown that the spillover ionic species (e.g., O δ − , Na δ + ) form an overall neutral double layer at the catalyst-gas interface which alters the catalyst work function and the binding energies of coadsorbed reactants and intermediates, thus causing very pronounced and reversible alterations in the catalytic activation energy and catalytic rate and selectivity. Recent efforts for the practical utilization of electrochemical promotion are also briefly discussed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>18532791</pmid><doi>10.1063/1.2824944</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2008-05, Vol.128 (18), p.182506-182506-13
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_71640543
source MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Carbon - chemistry
Catalysis
Electrochemistry
Electrodes
Electrolytes - chemistry
Gases - chemistry
Isomerism
Kinetics
Metals - chemistry
Oxidation-Reduction
Oxygen - chemistry
Surface Properties
Thermodynamics
title Non-Faradaic electrochemical activation of catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Faradaic%20electrochemical%20activation%20of%20catalysis&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Vayenas,%20Costas%20G.&rft.date=2008-05-14&rft.volume=128&rft.issue=18&rft.spage=182506&rft.epage=182506-13&rft.pages=182506-182506-13&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2824944&rft_dat=%3Cproquest_cross%3E71640543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71640543&rft_id=info:pmid/18532791&rfr_iscdi=true