Diversity in the serine recombinases

Summary Most site‐specific recombinases fall into one of two families, based on evolutionary and mechanistic relatedness. These are the tyrosine recombinases or λ integrase family and the serine recombinases or resolvase/invertase family. The tyrosine recombinases are structurally diverse and functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2002-04, Vol.44 (2), p.299-307
Hauptverfasser: Smith, Margaret C. M., Thorpe, Helena M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 2
container_start_page 299
container_title Molecular microbiology
container_volume 44
creator Smith, Margaret C. M.
Thorpe, Helena M.
description Summary Most site‐specific recombinases fall into one of two families, based on evolutionary and mechanistic relatedness. These are the tyrosine recombinases or λ integrase family and the serine recombinases or resolvase/invertase family. The tyrosine recombinases are structurally diverse and functionally versatile and include integrases, resolvases, invertases and transposases. Recent studies have revealed that the serine recombinase family is equally versatile and members have a variety of structural forms. The archetypal resolvase/invertases are highly regulated, only affect resolution or inversion and they have an N‐terminal catalytic domain and a C‐terminal DNA binding domain. Phage‐encoded serine recombinases (e.g. φC31 integrase) cause integration and excision with strictly controlled directionality, and have an N‐terminal catalytic domain but much longer C‐terminal domains compared with the resolvase/invertases. This high molecular weight group also contains transposases (e.g. TnpX from Tn4451). Other transposases, which belong to a third structurally different group, are similar in size to the resolvase/invertases but have the DNA binding domain N‐terminal to the catalytic domain (e.g. IS607 transposase). These three structural groups represented by the resolvase/invertases, the large serine recombinases and relatives of IS607 transposase correlate with three major groupings seen in a phylogeny of the catalytic domains. These observations indicate that the serine recombinases are modular and that fusion of the catalytic domain to unrelated sequences has generated structural and functional diversity.
doi_str_mv 10.1046/j.1365-2958.2002.02891.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71629357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71629357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5391-46b54ed85d7eff26683d3bfc6c7bc00af05fc6af46d5d2176b0c8a0c1900d73d3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMo7rr6F6SIeGudJE3SHDzI-rWwixcFb6FNU0zpx5psdfff27qLghc9zQzzzAvzIBRgiDDE_LKMMOUsJJIlEQEgEZBE4mi9h8bfi300BskgpAl5GaEj70sATIHTQzTCWAoiBB6j8xv7bpy3q01gm2D1agJvnG1M4Ixu68w2qTf-GB0UaeXNya5O0PPd7dP0IZw_3s-m1_NQMypxGPOMxSZPWC5MURDOE5rTrNBci0wDpAWwfkiLmOcsJ1jwDHSSgsYSIBc9O0EX29yla98641eqtl6bqkob03ZeCcyJpEz8CeKEShB4AM9-gWXbuaZ_QmHJWe-ByR5KtpB2rffOFGrpbJ26jcKgBt-qVINWNWhVg2_15Vut-9PTXX6X1Sb_OdwJ7oGrLfBhK7P5d7BaLGZDRz8BbQ2M2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196511959</pqid></control><display><type>article</type><title>Diversity in the serine recombinases</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Smith, Margaret C. M. ; Thorpe, Helena M.</creator><creatorcontrib>Smith, Margaret C. M. ; Thorpe, Helena M.</creatorcontrib><description>Summary Most site‐specific recombinases fall into one of two families, based on evolutionary and mechanistic relatedness. These are the tyrosine recombinases or λ integrase family and the serine recombinases or resolvase/invertase family. The tyrosine recombinases are structurally diverse and functionally versatile and include integrases, resolvases, invertases and transposases. Recent studies have revealed that the serine recombinase family is equally versatile and members have a variety of structural forms. The archetypal resolvase/invertases are highly regulated, only affect resolution or inversion and they have an N‐terminal catalytic domain and a C‐terminal DNA binding domain. Phage‐encoded serine recombinases (e.g. φC31 integrase) cause integration and excision with strictly controlled directionality, and have an N‐terminal catalytic domain but much longer C‐terminal domains compared with the resolvase/invertases. This high molecular weight group also contains transposases (e.g. TnpX from Tn4451). Other transposases, which belong to a third structurally different group, are similar in size to the resolvase/invertases but have the DNA binding domain N‐terminal to the catalytic domain (e.g. IS607 transposase). These three structural groups represented by the resolvase/invertases, the large serine recombinases and relatives of IS607 transposase correlate with three major groupings seen in a phylogeny of the catalytic domains. These observations indicate that the serine recombinases are modular and that fusion of the catalytic domain to unrelated sequences has generated structural and functional diversity.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2002.02891.x</identifier><identifier>PMID: 11972771</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Bacteria - enzymology ; Bacteria - genetics ; Bacteriophages - genetics ; Base Sequence ; DNA Nucleotidyltransferases - genetics ; DNA Nucleotidyltransferases - metabolism ; Genetic Variation ; Molecular Sequence Data ; Phylogeny ; Recombinases ; Serine ; Substrate Specificity ; Tyrosine</subject><ispartof>Molecular microbiology, 2002-04, Vol.44 (2), p.299-307</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Apr 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5391-46b54ed85d7eff26683d3bfc6c7bc00af05fc6af46d5d2176b0c8a0c1900d73d3</citedby><cites>FETCH-LOGICAL-c5391-46b54ed85d7eff26683d3bfc6c7bc00af05fc6af46d5d2176b0c8a0c1900d73d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2002.02891.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2002.02891.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11972771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Margaret C. M.</creatorcontrib><creatorcontrib>Thorpe, Helena M.</creatorcontrib><title>Diversity in the serine recombinases</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Most site‐specific recombinases fall into one of two families, based on evolutionary and mechanistic relatedness. These are the tyrosine recombinases or λ integrase family and the serine recombinases or resolvase/invertase family. The tyrosine recombinases are structurally diverse and functionally versatile and include integrases, resolvases, invertases and transposases. Recent studies have revealed that the serine recombinase family is equally versatile and members have a variety of structural forms. The archetypal resolvase/invertases are highly regulated, only affect resolution or inversion and they have an N‐terminal catalytic domain and a C‐terminal DNA binding domain. Phage‐encoded serine recombinases (e.g. φC31 integrase) cause integration and excision with strictly controlled directionality, and have an N‐terminal catalytic domain but much longer C‐terminal domains compared with the resolvase/invertases. This high molecular weight group also contains transposases (e.g. TnpX from Tn4451). Other transposases, which belong to a third structurally different group, are similar in size to the resolvase/invertases but have the DNA binding domain N‐terminal to the catalytic domain (e.g. IS607 transposase). These three structural groups represented by the resolvase/invertases, the large serine recombinases and relatives of IS607 transposase correlate with three major groupings seen in a phylogeny of the catalytic domains. These observations indicate that the serine recombinases are modular and that fusion of the catalytic domain to unrelated sequences has generated structural and functional diversity.</description><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacteriophages - genetics</subject><subject>Base Sequence</subject><subject>DNA Nucleotidyltransferases - genetics</subject><subject>DNA Nucleotidyltransferases - metabolism</subject><subject>Genetic Variation</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Recombinases</subject><subject>Serine</subject><subject>Substrate Specificity</subject><subject>Tyrosine</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAQhoMo7rr6F6SIeGudJE3SHDzI-rWwixcFb6FNU0zpx5psdfff27qLghc9zQzzzAvzIBRgiDDE_LKMMOUsJJIlEQEgEZBE4mi9h8bfi300BskgpAl5GaEj70sATIHTQzTCWAoiBB6j8xv7bpy3q01gm2D1agJvnG1M4Ixu68w2qTf-GB0UaeXNya5O0PPd7dP0IZw_3s-m1_NQMypxGPOMxSZPWC5MURDOE5rTrNBci0wDpAWwfkiLmOcsJ1jwDHSSgsYSIBc9O0EX29yla98641eqtl6bqkob03ZeCcyJpEz8CeKEShB4AM9-gWXbuaZ_QmHJWe-ByR5KtpB2rffOFGrpbJ26jcKgBt-qVINWNWhVg2_15Vut-9PTXX6X1Sb_OdwJ7oGrLfBhK7P5d7BaLGZDRz8BbQ2M2w</recordid><startdate>200204</startdate><enddate>200204</enddate><creator>Smith, Margaret C. M.</creator><creator>Thorpe, Helena M.</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200204</creationdate><title>Diversity in the serine recombinases</title><author>Smith, Margaret C. M. ; Thorpe, Helena M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5391-46b54ed85d7eff26683d3bfc6c7bc00af05fc6af46d5d2176b0c8a0c1900d73d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacteriophages - genetics</topic><topic>Base Sequence</topic><topic>DNA Nucleotidyltransferases - genetics</topic><topic>DNA Nucleotidyltransferases - metabolism</topic><topic>Genetic Variation</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Recombinases</topic><topic>Serine</topic><topic>Substrate Specificity</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Margaret C. M.</creatorcontrib><creatorcontrib>Thorpe, Helena M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Margaret C. M.</au><au>Thorpe, Helena M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity in the serine recombinases</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2002-04</date><risdate>2002</risdate><volume>44</volume><issue>2</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Most site‐specific recombinases fall into one of two families, based on evolutionary and mechanistic relatedness. These are the tyrosine recombinases or λ integrase family and the serine recombinases or resolvase/invertase family. The tyrosine recombinases are structurally diverse and functionally versatile and include integrases, resolvases, invertases and transposases. Recent studies have revealed that the serine recombinase family is equally versatile and members have a variety of structural forms. The archetypal resolvase/invertases are highly regulated, only affect resolution or inversion and they have an N‐terminal catalytic domain and a C‐terminal DNA binding domain. Phage‐encoded serine recombinases (e.g. φC31 integrase) cause integration and excision with strictly controlled directionality, and have an N‐terminal catalytic domain but much longer C‐terminal domains compared with the resolvase/invertases. This high molecular weight group also contains transposases (e.g. TnpX from Tn4451). Other transposases, which belong to a third structurally different group, are similar in size to the resolvase/invertases but have the DNA binding domain N‐terminal to the catalytic domain (e.g. IS607 transposase). These three structural groups represented by the resolvase/invertases, the large serine recombinases and relatives of IS607 transposase correlate with three major groupings seen in a phylogeny of the catalytic domains. These observations indicate that the serine recombinases are modular and that fusion of the catalytic domain to unrelated sequences has generated structural and functional diversity.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11972771</pmid><doi>10.1046/j.1365-2958.2002.02891.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2002-04, Vol.44 (2), p.299-307
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_71629357
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Bacteria - enzymology
Bacteria - genetics
Bacteriophages - genetics
Base Sequence
DNA Nucleotidyltransferases - genetics
DNA Nucleotidyltransferases - metabolism
Genetic Variation
Molecular Sequence Data
Phylogeny
Recombinases
Serine
Substrate Specificity
Tyrosine
title Diversity in the serine recombinases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20in%20the%20serine%20recombinases&rft.jtitle=Molecular%20microbiology&rft.au=Smith,%20Margaret%20C.%20M.&rft.date=2002-04&rft.volume=44&rft.issue=2&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2002.02891.x&rft_dat=%3Cproquest_cross%3E71629357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196511959&rft_id=info:pmid/11972771&rfr_iscdi=true