Molecular segregation observed in a concentrated alcohol–water solution

When a simple alcohol such as methanol or ethanol is mixed with water 1 , 2 , the entropy of the system increases far less than expected for an ideal solution of randomly mixed molecules 3 . This well-known effect has been attributed to hydrophobic headgroups creating ice-like or clathrate-like stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2002-04, Vol.416 (6883), p.829-832
Hauptverfasser: Dixit, S., Crain, J., Poon, W. C. K., Finney, J. L., Soper, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 6883
container_start_page 829
container_title Nature (London)
container_volume 416
creator Dixit, S.
Crain, J.
Poon, W. C. K.
Finney, J. L.
Soper, A. K.
description When a simple alcohol such as methanol or ethanol is mixed with water 1 , 2 , the entropy of the system increases far less than expected for an ideal solution of randomly mixed molecules 3 . This well-known effect has been attributed to hydrophobic headgroups creating ice-like or clathrate-like structures in the surrounding water 4 , although experimental support for this hypothesis is scarce 5 , 6 , 7 . In fact, an increasing amount of experimental and theoretical work suggests that the hydrophobic headgroups of alcohol molecules in aqueous solution cluster together 2 , 8 , 9 , 10 . However, a consistent description of the details of this self-association is lacking 11 , 12 , 13 . Here we use neutron diffraction with isotope substitution to probe the molecular-scale structure of a concentrated alcohol–water mixture (7:3 molar ratio). Our data indicate that most of the water molecules exist as small hydrogen-bonded strings and clusters in a ‘fluid’ of close-packed methyl groups, with water clusters bridging neighbouring methanol hydroxyl groups through hydrogen bonding. This behaviour suggests that the anomalous thermodynamics of water–alcohol systems arises from incomplete mixing at the molecular level and from retention of remnants of the three-dimensional hydrogen-bonded network structure of bulk water.
doi_str_mv 10.1038/416829a
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71626727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187511581</galeid><sourcerecordid>A187511581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-dfda2b959c7b421ec83f7692876917306354ab8976afbf9d2713c4f6b8f3f2fa3</originalsourceid><addsrcrecordid>eNqF0uuK1DAUAOAgijuu4hvIIKwXpGtuTdKfw-BlYFXQFX-WND2pXTLJbNLu6j_fwTf0ScwyhXGWlaW0Icl3TprDQegxwccEM_WaE6Fope-gGeFSFFwoeRfNMKaqwIqJA_QgpTOMcUkkv48OCKmkEFLN0OpDcGBGp-M8QReh00Mf_Dw0CeIFtPPez_XcBG_AD1EPeUU7E74H9-fX78s8z2HBjVcxD9E9q12CR9N4iL6-fXO6fF-cfHq3Wi5OCiNENRStbTVtqrIysuGUgFHMSlFRlT9EMixYyXWj8v9p29iqpZIww61olGWWWs0O0bNt3k0M5yOkoV73yYBz2kMYUy2JoEJSeStkJRU8v7dCohilHFcZPr0Gz8IYfb5tTTEvsSxLklGxRZ12UPfehlw404GHqF3wYPu8vCBKloSUiuyS7nmz6c_rf9HxDSg_Lax7c2PWl3sB2QzwY-j0mFK9-vJ53776v12cflt-3NfPt9rEkFIEW29iv9bxZ01wfdWM9dSMWT6ZyjU2a2h3buq-DI4moJPRzkbtTZ92jgnGc2Nk92LrUt7yHcRd3a-f-Rd26u8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204507551</pqid></control><display><type>article</type><title>Molecular segregation observed in a concentrated alcohol–water solution</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Dixit, S. ; Crain, J. ; Poon, W. C. K. ; Finney, J. L. ; Soper, A. K.</creator><creatorcontrib>Dixit, S. ; Crain, J. ; Poon, W. C. K. ; Finney, J. L. ; Soper, A. K.</creatorcontrib><description>When a simple alcohol such as methanol or ethanol is mixed with water 1 , 2 , the entropy of the system increases far less than expected for an ideal solution of randomly mixed molecules 3 . This well-known effect has been attributed to hydrophobic headgroups creating ice-like or clathrate-like structures in the surrounding water 4 , although experimental support for this hypothesis is scarce 5 , 6 , 7 . In fact, an increasing amount of experimental and theoretical work suggests that the hydrophobic headgroups of alcohol molecules in aqueous solution cluster together 2 , 8 , 9 , 10 . However, a consistent description of the details of this self-association is lacking 11 , 12 , 13 . Here we use neutron diffraction with isotope substitution to probe the molecular-scale structure of a concentrated alcohol–water mixture (7:3 molar ratio). Our data indicate that most of the water molecules exist as small hydrogen-bonded strings and clusters in a ‘fluid’ of close-packed methyl groups, with water clusters bridging neighbouring methanol hydroxyl groups through hydrogen bonding. This behaviour suggests that the anomalous thermodynamics of water–alcohol systems arises from incomplete mixing at the molecular level and from retention of remnants of the three-dimensional hydrogen-bonded network structure of bulk water.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/416829a</identifier><identifier>PMID: 11976678</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alcohol ; Alcohols ; Chemistry ; Ethanol ; Exact sciences and technology ; General and physical chemistry ; Humanities and Social Sciences ; Hydrogen ; letter ; Methanol ; Molecules ; multidisciplinary ; Neutrons ; Science ; Science (multidisciplinary) ; Solution properties ; Solutions ; Water</subject><ispartof>Nature (London), 2002-04, Vol.416 (6883), p.829-832</ispartof><rights>Macmillan Magazines Ltd. 2002</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Apr 25, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-dfda2b959c7b421ec83f7692876917306354ab8976afbf9d2713c4f6b8f3f2fa3</citedby><cites>FETCH-LOGICAL-c669t-dfda2b959c7b421ec83f7692876917306354ab8976afbf9d2713c4f6b8f3f2fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/416829a$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/416829a$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13634287$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11976678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixit, S.</creatorcontrib><creatorcontrib>Crain, J.</creatorcontrib><creatorcontrib>Poon, W. C. K.</creatorcontrib><creatorcontrib>Finney, J. L.</creatorcontrib><creatorcontrib>Soper, A. K.</creatorcontrib><title>Molecular segregation observed in a concentrated alcohol–water solution</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>When a simple alcohol such as methanol or ethanol is mixed with water 1 , 2 , the entropy of the system increases far less than expected for an ideal solution of randomly mixed molecules 3 . This well-known effect has been attributed to hydrophobic headgroups creating ice-like or clathrate-like structures in the surrounding water 4 , although experimental support for this hypothesis is scarce 5 , 6 , 7 . In fact, an increasing amount of experimental and theoretical work suggests that the hydrophobic headgroups of alcohol molecules in aqueous solution cluster together 2 , 8 , 9 , 10 . However, a consistent description of the details of this self-association is lacking 11 , 12 , 13 . Here we use neutron diffraction with isotope substitution to probe the molecular-scale structure of a concentrated alcohol–water mixture (7:3 molar ratio). Our data indicate that most of the water molecules exist as small hydrogen-bonded strings and clusters in a ‘fluid’ of close-packed methyl groups, with water clusters bridging neighbouring methanol hydroxyl groups through hydrogen bonding. This behaviour suggests that the anomalous thermodynamics of water–alcohol systems arises from incomplete mixing at the molecular level and from retention of remnants of the three-dimensional hydrogen-bonded network structure of bulk water.</description><subject>Alcohol</subject><subject>Alcohols</subject><subject>Chemistry</subject><subject>Ethanol</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>letter</subject><subject>Methanol</subject><subject>Molecules</subject><subject>multidisciplinary</subject><subject>Neutrons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solution properties</subject><subject>Solutions</subject><subject>Water</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0uuK1DAUAOAgijuu4hvIIKwXpGtuTdKfw-BlYFXQFX-WND2pXTLJbNLu6j_fwTf0ScwyhXGWlaW0Icl3TprDQegxwccEM_WaE6Fope-gGeFSFFwoeRfNMKaqwIqJA_QgpTOMcUkkv48OCKmkEFLN0OpDcGBGp-M8QReh00Mf_Dw0CeIFtPPez_XcBG_AD1EPeUU7E74H9-fX78s8z2HBjVcxD9E9q12CR9N4iL6-fXO6fF-cfHq3Wi5OCiNENRStbTVtqrIysuGUgFHMSlFRlT9EMixYyXWj8v9p29iqpZIww61olGWWWs0O0bNt3k0M5yOkoV73yYBz2kMYUy2JoEJSeStkJRU8v7dCohilHFcZPr0Gz8IYfb5tTTEvsSxLklGxRZ12UPfehlw404GHqF3wYPu8vCBKloSUiuyS7nmz6c_rf9HxDSg_Lax7c2PWl3sB2QzwY-j0mFK9-vJ53776v12cflt-3NfPt9rEkFIEW29iv9bxZ01wfdWM9dSMWT6ZyjU2a2h3buq-DI4moJPRzkbtTZ92jgnGc2Nk92LrUt7yHcRd3a-f-Rd26u8A</recordid><startdate>20020425</startdate><enddate>20020425</enddate><creator>Dixit, S.</creator><creator>Crain, J.</creator><creator>Poon, W. C. K.</creator><creator>Finney, J. L.</creator><creator>Soper, A. K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7UA</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20020425</creationdate><title>Molecular segregation observed in a concentrated alcohol–water solution</title><author>Dixit, S. ; Crain, J. ; Poon, W. C. K. ; Finney, J. L. ; Soper, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-dfda2b959c7b421ec83f7692876917306354ab8976afbf9d2713c4f6b8f3f2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alcohol</topic><topic>Alcohols</topic><topic>Chemistry</topic><topic>Ethanol</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>letter</topic><topic>Methanol</topic><topic>Molecules</topic><topic>multidisciplinary</topic><topic>Neutrons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solution properties</topic><topic>Solutions</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixit, S.</creatorcontrib><creatorcontrib>Crain, J.</creatorcontrib><creatorcontrib>Poon, W. C. K.</creatorcontrib><creatorcontrib>Finney, J. L.</creatorcontrib><creatorcontrib>Soper, A. K.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixit, S.</au><au>Crain, J.</au><au>Poon, W. C. K.</au><au>Finney, J. L.</au><au>Soper, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular segregation observed in a concentrated alcohol–water solution</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2002-04-25</date><risdate>2002</risdate><volume>416</volume><issue>6883</issue><spage>829</spage><epage>832</epage><pages>829-832</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>When a simple alcohol such as methanol or ethanol is mixed with water 1 , 2 , the entropy of the system increases far less than expected for an ideal solution of randomly mixed molecules 3 . This well-known effect has been attributed to hydrophobic headgroups creating ice-like or clathrate-like structures in the surrounding water 4 , although experimental support for this hypothesis is scarce 5 , 6 , 7 . In fact, an increasing amount of experimental and theoretical work suggests that the hydrophobic headgroups of alcohol molecules in aqueous solution cluster together 2 , 8 , 9 , 10 . However, a consistent description of the details of this self-association is lacking 11 , 12 , 13 . Here we use neutron diffraction with isotope substitution to probe the molecular-scale structure of a concentrated alcohol–water mixture (7:3 molar ratio). Our data indicate that most of the water molecules exist as small hydrogen-bonded strings and clusters in a ‘fluid’ of close-packed methyl groups, with water clusters bridging neighbouring methanol hydroxyl groups through hydrogen bonding. This behaviour suggests that the anomalous thermodynamics of water–alcohol systems arises from incomplete mixing at the molecular level and from retention of remnants of the three-dimensional hydrogen-bonded network structure of bulk water.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11976678</pmid><doi>10.1038/416829a</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2002-04, Vol.416 (6883), p.829-832
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_71626727
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Alcohol
Alcohols
Chemistry
Ethanol
Exact sciences and technology
General and physical chemistry
Humanities and Social Sciences
Hydrogen
letter
Methanol
Molecules
multidisciplinary
Neutrons
Science
Science (multidisciplinary)
Solution properties
Solutions
Water
title Molecular segregation observed in a concentrated alcohol–water solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20segregation%20observed%20in%20a%20concentrated%20alcohol%E2%80%93water%20solution&rft.jtitle=Nature%20(London)&rft.au=Dixit,%20S.&rft.date=2002-04-25&rft.volume=416&rft.issue=6883&rft.spage=829&rft.epage=832&rft.pages=829-832&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/416829a&rft_dat=%3Cgale_proqu%3EA187511581%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204507551&rft_id=info:pmid/11976678&rft_galeid=A187511581&rfr_iscdi=true