Retinal Pathology in a Canine Model of Late Infantile Neuronal Ceroid Lipofuscinosis

Late infantile neuronal ceroid lipofuscinosis (NCL) is an inherited disorder characterized by progressive vision loss. The disease results from mutations in the TPP1 (CLN2) gene. Studies were undertaken to characterize the effects of a TPP1 frameshift mutation on the retina in Dachshunds. A litter o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2008-06, Vol.49 (6), p.2686-2695
Hauptverfasser: Katz, Martin L, Coates, Joan R, Cooper, Jocelyn J, O'Brien, Dennis P, Jeong, Manbok, Narfstrom, Kristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Late infantile neuronal ceroid lipofuscinosis (NCL) is an inherited disorder characterized by progressive vision loss. The disease results from mutations in the TPP1 (CLN2) gene. Studies were undertaken to characterize the effects of a TPP1 frameshift mutation on the retina in Dachshunds. A litter of four puppies consisting of one homozygous affected dog, two heterozygotes, and one homozygous normal dog were monitored for neurologic and retinal changes through 10 months of age. The affected and homozygous normal dogs, as well as one of the heterozygotes, were then euthanatized, and the retinas were examined morphologically. The affected dog exhibited normal visual behavior and retinal function at 3 months of age, but vision was clearly impaired by 7 months, with markedly reduced ERG b-wave amplitudes. Beyond 7 months of age, the affected dog was functionally blind, and pupillary light reflexes and ERG response amplitudes continued to decline through 10 months of age. Both rod and cone system functions were severely impaired. The retina exhibited accumulation of autofluorescent storage bodies with distinctive curvilinear contents. Substantial cell loss occurred in the inner nuclear layer, with a smaller reduction in photoreceptor cell density. The canine TPP1 mutation results in progressive vision loss and retinal degeneration similar to that which occurs in human late infantile NCL. With the canine model, the natural history of disease progression in the retina provides a better understanding of the pathologic course of the disease and provides objective markers that can be used to assess the efficacy of therapeutic interventions.
ISSN:0146-0404
1552-5783
1552-5783
DOI:10.1167/iovs.08-1712