Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia
Chronic myeloid leukemia (CML) has been studied intensively for many years; yet its treatment remains problematic and its biology remains elusive. In chronic phase, the leukemic clone appears to be maintained by a small number of BCR-ABL-positive hematopoietic stem cells that differentiate normally...
Gespeichert in:
Veröffentlicht in: | Leukemia 2002-04, Vol.16 (4), p.549-558 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 4 |
container_start_page | 549 |
container_title | Leukemia |
container_volume | 16 |
creator | HOLYOAKE, T. L JIANG, X DRUMMOND, M. W EAVES, A. C EAVES, C. J |
description | Chronic myeloid leukemia (CML) has been studied intensively for many years; yet its treatment remains problematic and its biology remains elusive. In chronic phase, the leukemic clone appears to be maintained by a small number of BCR-ABL-positive hematopoietic stem cells that differentiate normally and amplify slowly. In contrast, as these cells enter the intermediate stages of lineage restriction, their progeny are selectively expanded and generate an enlarged pool of neoplastic progenitors. Recent analyses of purified subsets of primitive CML cells have provided a coherent explanation for this dichotomous behavior of BCR-ABL-positive stem and progenitor cells based on the discovery of an unusual autocrine IL-3/G-CSF mechanism activated in them. This only partially counteracts in vivosignals that maintain normal stem cells in a quiescent state but, when active in CML stem cells, promotes their differentiation in favor of their self-renewal. In more differentiated CML progenitors, the same mechanism has a more potent mitogenic effect which is then extinguished when the cells enter the terminal stages of differentiation. Thus, further expansion of the clone is limited until inevitably additional mutations are acquired that further distort or override the regulatory mechanisms still operative in the chronic phase. |
doi_str_mv | 10.1038/sj.leu.2402444 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71613453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A201866256</galeid><sourcerecordid>A201866256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-ef61e95ce5038855ed8162ef19fdcfbe3733709ebde8a7646d1e7d0b861e0a473</originalsourceid><addsrcrecordid>eNp1kUuLFDEUhQtRnJ7RrUsJyrjrNu9KLYdhfMCAG12HdHKrK22q0iYpYf69KaekUXAVSL5zc-45TfOK4B3BTL3Px12AeUc5ppzzJ82G8FZuhRDkabPBSrVb2VF-0VzmfMR4eZTPmwtCOokZI5sm3YXZemeKnw7IJl-8NQGNYAcz-TxmFHvkIMFhDqaAQ7nAiCyEgMqcpvgTEvITKgMgO6Q4eYtOg8mwyP5cjA8Qoneo-vwOozcvmme9CRlerudV8-3D3dfbT9v7Lx8_397cb61gtGyhlwQ6YUHUPZUQ4BSRFHrS9c72e2AtYy3uYO9AmVZy6Qi0Du9VlWHDW3bVvHuce0rxxwy56NHnxbqZIM5Zt0QSxgWr4Nt_wGOsy1VvmkouWqJqcpV681-KYkGFkN151MEE0H7qY0nGLv_qG4qJkpIKeXb2mxrAhDLkGObi45T_BnePoE0x5wS9PiU_mvSgCdZL_zofdc1Vr_1XwevV5LwfwZ3xtfAKXK-AybXpPpnJ-nzmaqSK11x-AS5Gt9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220525569</pqid></control><display><type>article</type><title>Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>HOLYOAKE, T. L ; JIANG, X ; DRUMMOND, M. W ; EAVES, A. C ; EAVES, C. J</creator><creatorcontrib>HOLYOAKE, T. L ; JIANG, X ; DRUMMOND, M. W ; EAVES, A. C ; EAVES, C. J</creatorcontrib><description>Chronic myeloid leukemia (CML) has been studied intensively for many years; yet its treatment remains problematic and its biology remains elusive. In chronic phase, the leukemic clone appears to be maintained by a small number of BCR-ABL-positive hematopoietic stem cells that differentiate normally and amplify slowly. In contrast, as these cells enter the intermediate stages of lineage restriction, their progeny are selectively expanded and generate an enlarged pool of neoplastic progenitors. Recent analyses of purified subsets of primitive CML cells have provided a coherent explanation for this dichotomous behavior of BCR-ABL-positive stem and progenitor cells based on the discovery of an unusual autocrine IL-3/G-CSF mechanism activated in them. This only partially counteracts in vivosignals that maintain normal stem cells in a quiescent state but, when active in CML stem cells, promotes their differentiation in favor of their self-renewal. In more differentiated CML progenitors, the same mechanism has a more potent mitogenic effect which is then extinguished when the cells enter the terminal stages of differentiation. Thus, further expansion of the clone is limited until inevitably additional mutations are acquired that further distort or override the regulatory mechanisms still operative in the chronic phase.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/sj.leu.2402444</identifier><identifier>PMID: 11960331</identifier><identifier>CODEN: LEUKED</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Antigens, CD - metabolism ; Autocrine signalling ; BCR-ABL protein ; Biological and medical sciences ; Cell differentiation ; Cell Division ; Cell self-renewal ; Chromosome Aberrations ; Chromosomes ; Chronic myeloid leukemia ; Cloning ; Deregulation ; Development and progression ; Differentiation ; Fusion protein ; Fusion Proteins, bcr-abl - metabolism ; Genetic aspects ; Granulocyte colony-stimulating factor ; Granulocytes ; Hematologic and hematopoietic diseases ; Hematopoiesis ; Hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Humans ; Interleukin 3 ; Kinases ; Leukemia ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis ; Medical sciences ; Middle Aged ; Mutation ; Myeloid leukemia ; Physiological aspects ; Progenitor cells ; Progeny ; Regulatory mechanisms (biology) ; Stem cells ; Telomere - physiology</subject><ispartof>Leukemia, 2002-04, Vol.16 (4), p.549-558</ispartof><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2002</rights><rights>Macmillan Publishers Limited 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-ef61e95ce5038855ed8162ef19fdcfbe3733709ebde8a7646d1e7d0b861e0a473</citedby><cites>FETCH-LOGICAL-c532t-ef61e95ce5038855ed8162ef19fdcfbe3733709ebde8a7646d1e7d0b861e0a473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13708461$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11960331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HOLYOAKE, T. L</creatorcontrib><creatorcontrib>JIANG, X</creatorcontrib><creatorcontrib>DRUMMOND, M. W</creatorcontrib><creatorcontrib>EAVES, A. C</creatorcontrib><creatorcontrib>EAVES, C. J</creatorcontrib><title>Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><description>Chronic myeloid leukemia (CML) has been studied intensively for many years; yet its treatment remains problematic and its biology remains elusive. In chronic phase, the leukemic clone appears to be maintained by a small number of BCR-ABL-positive hematopoietic stem cells that differentiate normally and amplify slowly. In contrast, as these cells enter the intermediate stages of lineage restriction, their progeny are selectively expanded and generate an enlarged pool of neoplastic progenitors. Recent analyses of purified subsets of primitive CML cells have provided a coherent explanation for this dichotomous behavior of BCR-ABL-positive stem and progenitor cells based on the discovery of an unusual autocrine IL-3/G-CSF mechanism activated in them. This only partially counteracts in vivosignals that maintain normal stem cells in a quiescent state but, when active in CML stem cells, promotes their differentiation in favor of their self-renewal. In more differentiated CML progenitors, the same mechanism has a more potent mitogenic effect which is then extinguished when the cells enter the terminal stages of differentiation. Thus, further expansion of the clone is limited until inevitably additional mutations are acquired that further distort or override the regulatory mechanisms still operative in the chronic phase.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Antigens, CD - metabolism</subject><subject>Autocrine signalling</subject><subject>BCR-ABL protein</subject><subject>Biological and medical sciences</subject><subject>Cell differentiation</subject><subject>Cell Division</subject><subject>Cell self-renewal</subject><subject>Chromosome Aberrations</subject><subject>Chromosomes</subject><subject>Chronic myeloid leukemia</subject><subject>Cloning</subject><subject>Deregulation</subject><subject>Development and progression</subject><subject>Differentiation</subject><subject>Fusion protein</subject><subject>Fusion Proteins, bcr-abl - metabolism</subject><subject>Genetic aspects</subject><subject>Granulocyte colony-stimulating factor</subject><subject>Granulocytes</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Hematopoiesis</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Interleukin 3</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Myeloid leukemia</subject><subject>Physiological aspects</subject><subject>Progenitor cells</subject><subject>Progeny</subject><subject>Regulatory mechanisms (biology)</subject><subject>Stem cells</subject><subject>Telomere - physiology</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUuLFDEUhQtRnJ7RrUsJyrjrNu9KLYdhfMCAG12HdHKrK22q0iYpYf69KaekUXAVSL5zc-45TfOK4B3BTL3Px12AeUc5ppzzJ82G8FZuhRDkabPBSrVb2VF-0VzmfMR4eZTPmwtCOokZI5sm3YXZemeKnw7IJl-8NQGNYAcz-TxmFHvkIMFhDqaAQ7nAiCyEgMqcpvgTEvITKgMgO6Q4eYtOg8mwyP5cjA8Qoneo-vwOozcvmme9CRlerudV8-3D3dfbT9v7Lx8_397cb61gtGyhlwQ6YUHUPZUQ4BSRFHrS9c72e2AtYy3uYO9AmVZy6Qi0Du9VlWHDW3bVvHuce0rxxwy56NHnxbqZIM5Zt0QSxgWr4Nt_wGOsy1VvmkouWqJqcpV681-KYkGFkN151MEE0H7qY0nGLv_qG4qJkpIKeXb2mxrAhDLkGObi45T_BnePoE0x5wS9PiU_mvSgCdZL_zofdc1Vr_1XwevV5LwfwZ3xtfAKXK-AybXpPpnJ-nzmaqSK11x-AS5Gt9U</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>HOLYOAKE, T. L</creator><creator>JIANG, X</creator><creator>DRUMMOND, M. W</creator><creator>EAVES, A. C</creator><creator>EAVES, C. J</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20020401</creationdate><title>Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia</title><author>HOLYOAKE, T. L ; JIANG, X ; DRUMMOND, M. W ; EAVES, A. C ; EAVES, C. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-ef61e95ce5038855ed8162ef19fdcfbe3733709ebde8a7646d1e7d0b861e0a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Antigens, CD - metabolism</topic><topic>Autocrine signalling</topic><topic>BCR-ABL protein</topic><topic>Biological and medical sciences</topic><topic>Cell differentiation</topic><topic>Cell Division</topic><topic>Cell self-renewal</topic><topic>Chromosome Aberrations</topic><topic>Chromosomes</topic><topic>Chronic myeloid leukemia</topic><topic>Cloning</topic><topic>Deregulation</topic><topic>Development and progression</topic><topic>Differentiation</topic><topic>Fusion protein</topic><topic>Fusion Proteins, bcr-abl - metabolism</topic><topic>Genetic aspects</topic><topic>Granulocyte colony-stimulating factor</topic><topic>Granulocytes</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Hematopoiesis</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Interleukin 3</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Myeloid leukemia</topic><topic>Physiological aspects</topic><topic>Progenitor cells</topic><topic>Progeny</topic><topic>Regulatory mechanisms (biology)</topic><topic>Stem cells</topic><topic>Telomere - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOLYOAKE, T. L</creatorcontrib><creatorcontrib>JIANG, X</creatorcontrib><creatorcontrib>DRUMMOND, M. W</creatorcontrib><creatorcontrib>EAVES, A. C</creatorcontrib><creatorcontrib>EAVES, C. J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOLYOAKE, T. L</au><au>JIANG, X</au><au>DRUMMOND, M. W</au><au>EAVES, A. C</au><au>EAVES, C. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia</atitle><jtitle>Leukemia</jtitle><addtitle>Leukemia</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>16</volume><issue>4</issue><spage>549</spage><epage>558</epage><pages>549-558</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><coden>LEUKED</coden><abstract>Chronic myeloid leukemia (CML) has been studied intensively for many years; yet its treatment remains problematic and its biology remains elusive. In chronic phase, the leukemic clone appears to be maintained by a small number of BCR-ABL-positive hematopoietic stem cells that differentiate normally and amplify slowly. In contrast, as these cells enter the intermediate stages of lineage restriction, their progeny are selectively expanded and generate an enlarged pool of neoplastic progenitors. Recent analyses of purified subsets of primitive CML cells have provided a coherent explanation for this dichotomous behavior of BCR-ABL-positive stem and progenitor cells based on the discovery of an unusual autocrine IL-3/G-CSF mechanism activated in them. This only partially counteracts in vivosignals that maintain normal stem cells in a quiescent state but, when active in CML stem cells, promotes their differentiation in favor of their self-renewal. In more differentiated CML progenitors, the same mechanism has a more potent mitogenic effect which is then extinguished when the cells enter the terminal stages of differentiation. Thus, further expansion of the clone is limited until inevitably additional mutations are acquired that further distort or override the regulatory mechanisms still operative in the chronic phase.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>11960331</pmid><doi>10.1038/sj.leu.2402444</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2002-04, Vol.16 (4), p.549-558 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_proquest_miscellaneous_71613453 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adolescent Adult Aged Aged, 80 and over Antigens, CD - metabolism Autocrine signalling BCR-ABL protein Biological and medical sciences Cell differentiation Cell Division Cell self-renewal Chromosome Aberrations Chromosomes Chronic myeloid leukemia Cloning Deregulation Development and progression Differentiation Fusion protein Fusion Proteins, bcr-abl - metabolism Genetic aspects Granulocyte colony-stimulating factor Granulocytes Hematologic and hematopoietic diseases Hematopoiesis Hematopoietic stem cells Hematopoietic Stem Cells - metabolism Humans Interleukin 3 Kinases Leukemia Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis Medical sciences Middle Aged Mutation Myeloid leukemia Physiological aspects Progenitor cells Progeny Regulatory mechanisms (biology) Stem cells Telomere - physiology |
title | Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20critical%20mechanisms%20of%20deregulated%20stem%20cell%20turnover%20in%20the%20chronic%20phase%20of%20chronic%20myeloid%20leukemia&rft.jtitle=Leukemia&rft.au=HOLYOAKE,%20T.%20L&rft.date=2002-04-01&rft.volume=16&rft.issue=4&rft.spage=549&rft.epage=558&rft.pages=549-558&rft.issn=0887-6924&rft.eissn=1476-5551&rft.coden=LEUKED&rft_id=info:doi/10.1038/sj.leu.2402444&rft_dat=%3Cgale_proqu%3EA201866256%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220525569&rft_id=info:pmid/11960331&rft_galeid=A201866256&rfr_iscdi=true |