Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm

In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current Protocols in Bioinformatics 2003-05, Vol.1 (1), p.4.5.1-4.5.16
Hauptverfasser: Borodovsky, Mark, Mills, Ryan, Besemer, John, Lomsadze, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4.5.16
container_issue 1
container_start_page 4.5.1
container_title Current Protocols in Bioinformatics
container_volume 1
creator Borodovsky, Mark
Mills, Ryan
Besemer, John
Lomsadze, Alex
description In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection.
doi_str_mv 10.1002/0471250953.bi0405s01
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71613287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71613287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</originalsourceid><addsrcrecordid>eNqNkEtPAjEUhRujEYL8A2Nm5W7w9jFtR1c6USTByEISd82009GGeWALMfx7B0HYurrn3nz3JOcgdIlhhAHIDTCBSQJpQkfaAYMkAD5BfZxSFlMG76d_mqa8h4YhOA04kSmXHM5RD0tGpADoo7uZbxe537QrZ6KxbWw087ZwZuXaJpoH13z8Xl9yv4jypjgso8-6vkBnZV4FO9zPAZo_Pb5lz_H0dTzJ7qexIQInsWEaSJ4zLYQuSsskxVqDSK0seUp4wa3GzKRUECCG2wRzAEEKwiRjBrSgA3S981369mttw0rVLhhbVXlj23VQAnNMuzwdyHag8W0I3pZq6V3dpVMY1LY3dexNHXrr3q72_mtd2-L4tG-pA253wLer7OZfpiqbPUy2mv4A2dx4OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71613287</pqid></control><display><type>article</type><title>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Borodovsky, Mark ; Mills, Ryan ; Besemer, John ; Lomsadze, Alex</creator><creatorcontrib>Borodovsky, Mark ; Mills, Ryan ; Besemer, John ; Lomsadze, Alex</creatorcontrib><description>In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection.</description><identifier>ISSN: 1934-3396</identifier><identifier>EISSN: 1934-340X</identifier><identifier>DOI: 10.1002/0471250953.bi0405s01</identifier><identifier>PMID: 18428700</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Animals ; Base Sequence ; Chromosome Mapping - methods ; Genome, Archaeal - genetics ; Genome, Bacterial - genetics ; Humans ; Markov Chains ; Molecular Sequence Data ; Pattern Recognition, Automated - methods ; Sequence Alignment - methods ; Sequence Analysis, DNA - methods ; Software</subject><ispartof>Current Protocols in Bioinformatics, 2003-05, Vol.1 (1), p.4.5.1-4.5.16</ispartof><rights>Copyright © 2003 John Wiley &amp; Sons, Inc. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</citedby><cites>FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18428700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borodovsky, Mark</creatorcontrib><creatorcontrib>Mills, Ryan</creatorcontrib><creatorcontrib>Besemer, John</creatorcontrib><creatorcontrib>Lomsadze, Alex</creatorcontrib><title>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</title><title>Current Protocols in Bioinformatics</title><addtitle>Curr Protoc Bioinformatics</addtitle><description>In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Chromosome Mapping - methods</subject><subject>Genome, Archaeal - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Molecular Sequence Data</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><issn>1934-3396</issn><issn>1934-340X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtPAjEUhRujEYL8A2Nm5W7w9jFtR1c6USTByEISd82009GGeWALMfx7B0HYurrn3nz3JOcgdIlhhAHIDTCBSQJpQkfaAYMkAD5BfZxSFlMG76d_mqa8h4YhOA04kSmXHM5RD0tGpADoo7uZbxe537QrZ6KxbWw087ZwZuXaJpoH13z8Xl9yv4jypjgso8-6vkBnZV4FO9zPAZo_Pb5lz_H0dTzJ7qexIQInsWEaSJ4zLYQuSsskxVqDSK0seUp4wa3GzKRUECCG2wRzAEEKwiRjBrSgA3S981369mttw0rVLhhbVXlj23VQAnNMuzwdyHag8W0I3pZq6V3dpVMY1LY3dexNHXrr3q72_mtd2-L4tG-pA253wLer7OZfpiqbPUy2mv4A2dx4OQ</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Borodovsky, Mark</creator><creator>Mills, Ryan</creator><creator>Besemer, John</creator><creator>Lomsadze, Alex</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200305</creationdate><title>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</title><author>Borodovsky, Mark ; Mills, Ryan ; Besemer, John ; Lomsadze, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Chromosome Mapping - methods</topic><topic>Genome, Archaeal - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Molecular Sequence Data</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Borodovsky, Mark</creatorcontrib><creatorcontrib>Mills, Ryan</creatorcontrib><creatorcontrib>Besemer, John</creatorcontrib><creatorcontrib>Lomsadze, Alex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current Protocols in Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodovsky, Mark</au><au>Mills, Ryan</au><au>Besemer, John</au><au>Lomsadze, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</atitle><jtitle>Current Protocols in Bioinformatics</jtitle><addtitle>Curr Protoc Bioinformatics</addtitle><date>2003-05</date><risdate>2003</risdate><volume>1</volume><issue>1</issue><spage>4.5.1</spage><epage>4.5.16</epage><pages>4.5.1-4.5.16</pages><issn>1934-3396</issn><eissn>1934-340X</eissn><abstract>In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection.</abstract><cop>United States</cop><pmid>18428700</pmid><doi>10.1002/0471250953.bi0405s01</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1934-3396
ispartof Current Protocols in Bioinformatics, 2003-05, Vol.1 (1), p.4.5.1-4.5.16
issn 1934-3396
1934-340X
language eng
recordid cdi_proquest_miscellaneous_71613287
source MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Animals
Base Sequence
Chromosome Mapping - methods
Genome, Archaeal - genetics
Genome, Bacterial - genetics
Humans
Markov Chains
Molecular Sequence Data
Pattern Recognition, Automated - methods
Sequence Alignment - methods
Sequence Analysis, DNA - methods
Software
title Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prokaryotic%20Gene%20Prediction%20Using%20GeneMark%20and%20GeneMark.hmm&rft.jtitle=Current%20Protocols%20in%20Bioinformatics&rft.au=Borodovsky,%20Mark&rft.date=2003-05&rft.volume=1&rft.issue=1&rft.spage=4.5.1&rft.epage=4.5.16&rft.pages=4.5.1-4.5.16&rft.issn=1934-3396&rft.eissn=1934-340X&rft_id=info:doi/10.1002/0471250953.bi0405s01&rft_dat=%3Cproquest_cross%3E71613287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71613287&rft_id=info:pmid/18428700&rfr_iscdi=true