Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm
In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use...
Gespeichert in:
Veröffentlicht in: | Current Protocols in Bioinformatics 2003-05, Vol.1 (1), p.4.5.1-4.5.16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4.5.16 |
---|---|
container_issue | 1 |
container_start_page | 4.5.1 |
container_title | Current Protocols in Bioinformatics |
container_volume | 1 |
creator | Borodovsky, Mark Mills, Ryan Besemer, John Lomsadze, Alex |
description | In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection. |
doi_str_mv | 10.1002/0471250953.bi0405s01 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71613287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71613287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</originalsourceid><addsrcrecordid>eNqNkEtPAjEUhRujEYL8A2Nm5W7w9jFtR1c6USTByEISd82009GGeWALMfx7B0HYurrn3nz3JOcgdIlhhAHIDTCBSQJpQkfaAYMkAD5BfZxSFlMG76d_mqa8h4YhOA04kSmXHM5RD0tGpADoo7uZbxe537QrZ6KxbWw087ZwZuXaJpoH13z8Xl9yv4jypjgso8-6vkBnZV4FO9zPAZo_Pb5lz_H0dTzJ7qexIQInsWEaSJ4zLYQuSsskxVqDSK0seUp4wa3GzKRUECCG2wRzAEEKwiRjBrSgA3S981369mttw0rVLhhbVXlj23VQAnNMuzwdyHag8W0I3pZq6V3dpVMY1LY3dexNHXrr3q72_mtd2-L4tG-pA253wLer7OZfpiqbPUy2mv4A2dx4OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71613287</pqid></control><display><type>article</type><title>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Borodovsky, Mark ; Mills, Ryan ; Besemer, John ; Lomsadze, Alex</creator><creatorcontrib>Borodovsky, Mark ; Mills, Ryan ; Besemer, John ; Lomsadze, Alex</creatorcontrib><description>In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection.</description><identifier>ISSN: 1934-3396</identifier><identifier>EISSN: 1934-340X</identifier><identifier>DOI: 10.1002/0471250953.bi0405s01</identifier><identifier>PMID: 18428700</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Animals ; Base Sequence ; Chromosome Mapping - methods ; Genome, Archaeal - genetics ; Genome, Bacterial - genetics ; Humans ; Markov Chains ; Molecular Sequence Data ; Pattern Recognition, Automated - methods ; Sequence Alignment - methods ; Sequence Analysis, DNA - methods ; Software</subject><ispartof>Current Protocols in Bioinformatics, 2003-05, Vol.1 (1), p.4.5.1-4.5.16</ispartof><rights>Copyright © 2003 John Wiley & Sons, Inc. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</citedby><cites>FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18428700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borodovsky, Mark</creatorcontrib><creatorcontrib>Mills, Ryan</creatorcontrib><creatorcontrib>Besemer, John</creatorcontrib><creatorcontrib>Lomsadze, Alex</creatorcontrib><title>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</title><title>Current Protocols in Bioinformatics</title><addtitle>Curr Protoc Bioinformatics</addtitle><description>In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Chromosome Mapping - methods</subject><subject>Genome, Archaeal - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Molecular Sequence Data</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><issn>1934-3396</issn><issn>1934-340X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtPAjEUhRujEYL8A2Nm5W7w9jFtR1c6USTByEISd82009GGeWALMfx7B0HYurrn3nz3JOcgdIlhhAHIDTCBSQJpQkfaAYMkAD5BfZxSFlMG76d_mqa8h4YhOA04kSmXHM5RD0tGpADoo7uZbxe537QrZ6KxbWw087ZwZuXaJpoH13z8Xl9yv4jypjgso8-6vkBnZV4FO9zPAZo_Pb5lz_H0dTzJ7qexIQInsWEaSJ4zLYQuSsskxVqDSK0seUp4wa3GzKRUECCG2wRzAEEKwiRjBrSgA3S981369mttw0rVLhhbVXlj23VQAnNMuzwdyHag8W0I3pZq6V3dpVMY1LY3dexNHXrr3q72_mtd2-L4tG-pA253wLer7OZfpiqbPUy2mv4A2dx4OQ</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Borodovsky, Mark</creator><creator>Mills, Ryan</creator><creator>Besemer, John</creator><creator>Lomsadze, Alex</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200305</creationdate><title>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</title><author>Borodovsky, Mark ; Mills, Ryan ; Besemer, John ; Lomsadze, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2715-c4b02aa4b77bdfe4831bb079e8f6926d6eb14c937202c6e5160072d24844c0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Chromosome Mapping - methods</topic><topic>Genome, Archaeal - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Molecular Sequence Data</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Borodovsky, Mark</creatorcontrib><creatorcontrib>Mills, Ryan</creatorcontrib><creatorcontrib>Besemer, John</creatorcontrib><creatorcontrib>Lomsadze, Alex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current Protocols in Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodovsky, Mark</au><au>Mills, Ryan</au><au>Besemer, John</au><au>Lomsadze, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm</atitle><jtitle>Current Protocols in Bioinformatics</jtitle><addtitle>Curr Protoc Bioinformatics</addtitle><date>2003-05</date><risdate>2003</risdate><volume>1</volume><issue>1</issue><spage>4.5.1</spage><epage>4.5.16</epage><pages>4.5.1-4.5.16</pages><issn>1934-3396</issn><eissn>1934-340X</eissn><abstract>In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection.</abstract><cop>United States</cop><pmid>18428700</pmid><doi>10.1002/0471250953.bi0405s01</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-3396 |
ispartof | Current Protocols in Bioinformatics, 2003-05, Vol.1 (1), p.4.5.1-4.5.16 |
issn | 1934-3396 1934-340X |
language | eng |
recordid | cdi_proquest_miscellaneous_71613287 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Algorithms Animals Base Sequence Chromosome Mapping - methods Genome, Archaeal - genetics Genome, Bacterial - genetics Humans Markov Chains Molecular Sequence Data Pattern Recognition, Automated - methods Sequence Alignment - methods Sequence Analysis, DNA - methods Software |
title | Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prokaryotic%20Gene%20Prediction%20Using%20GeneMark%20and%20GeneMark.hmm&rft.jtitle=Current%20Protocols%20in%20Bioinformatics&rft.au=Borodovsky,%20Mark&rft.date=2003-05&rft.volume=1&rft.issue=1&rft.spage=4.5.1&rft.epage=4.5.16&rft.pages=4.5.1-4.5.16&rft.issn=1934-3396&rft.eissn=1934-340X&rft_id=info:doi/10.1002/0471250953.bi0405s01&rft_dat=%3Cproquest_cross%3E71613287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71613287&rft_id=info:pmid/18428700&rfr_iscdi=true |