Postnatal development of the dopaminergic system of the striatum in the rat
The dopaminergic innervation of the developing caudate–putamen (patches and matrix) and nucleus accumbens (shell and core) of the rat was examined with light and electron microscope immunocytochemistry, using antibodies against dopamine. Light microscopic analysis showed, in accordance with previous...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2002-01, Vol.110 (2), p.245-256 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dopaminergic innervation of the developing caudate–putamen (patches and matrix) and nucleus accumbens (shell and core) of the rat was examined with light and electron microscope immunocytochemistry, using antibodies against dopamine. Light microscopic analysis showed, in accordance with previous studies, that early in life, dopaminergic fibers were relatively thick and present throughout the striatum. Their distribution was heterogeneous, showing dense aggregations, the so-called dopamine islands. The pattern of innervation became more uniform during the third postnatal week with most of the dopamine islands no longer detectable. For electron microscopic analysis, parts of the caudate–putamen containing dopamine islands or matrix, and of the nucleus accumbens, from the shell and the core of the nucleus, were selected. This analysis revealed that symmetrical synapses between immunoreactive profiles and unlabeled dendritic shafts predominated throughout development but, at the late stages, symmetrical axospinous synapses also became a prominent feature.
These findings indicate that: (1) although the caudate–putamen and the nucleus accumbens have different connections and functions, they exhibit similar types of dopaminergic synapses, and (2) the relatively late detection of dopaminergic axospinous synapses suggests that the development of the dopaminergic system in the striatum is an active process, which parallels the morphological changes of striatal neurons and may contribute to their maturation. |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/S0306-4522(01)00575-9 |