Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent
The swelling of a model polyelectrolyte gel is studied via three-dimensional molecular dynamics simulations, taking into account the counterions and the solvent explicitly. Each network bead carries a charge q(*). The counterion charge is -q(*), and thus the total system is neutral. The solvent is m...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-06, Vol.67 (6 Pt 1), p.061807-061807, Article 061807 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 061807 |
---|---|
container_issue | 6 Pt 1 |
container_start_page | 061807 |
container_title | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
container_volume | 67 |
creator | Lu, Z-Y Hentschke, R |
description | The swelling of a model polyelectrolyte gel is studied via three-dimensional molecular dynamics simulations, taking into account the counterions and the solvent explicitly. Each network bead carries a charge q(*). The counterion charge is -q(*), and thus the total system is neutral. The solvent is modeled via a Stockmayer fluid, i.e., each solvent particle is a point dipole plus a Lennard-Jones interaction center. A "two-box--particle transfer" simulation method is applied to calculate the swelling ratio of the network as well as the counterion mobility. The swelling of the network shows a broad maximum as a function of q(*) at T(*)(r)=T(*)/T(*)(c)=1.05 and P(*)(r)=P(*)/P(*)(c)=1.0. Here, T(*)(c) and P(*)(c) are the critical temperature and the critical pressure of the pure Stockmayer solvent, respectively, with dipole moments given by mu(*2)=1.0, 2.0, 3.0, and 4.0. The residence time of the counterions is calculated, showing a strong coupling to the charged network beads (condensation) as q(*) increases. Additional simulations at three different charge strengths (i.e., q(*)=0.5, 3.5, and 8.6) illustrate the complicated swelling behavior of the network under supercritical and subcritical conditions. |
doi_str_mv | 10.1103/PhysRevE.67.061807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71602221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71602221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-973cfcfb0568953b628bbf6cde1c142ff47b6a15b1baa28711b502e6118d343a3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyyQV-xSPHZsJ0tUlYdUCcRjwyayHacNJHGInaL8PalaxGqONHeuRgehSyBzAMJunjeDf7Hb5VzIORGQEHmEpkBSHjGZyOOROUtH5nyCzrz_JIRRlsSnaAKCxkB5PEUfC1e3fbAd9mXdVyqUrsE-9PmARwgbi_2PraqyWWNXYIVbVw22siZ0IwSL17bCehgXr8GZr1oNuyZXbW0TztFJoSpvLw5zht7vlm-Lh2j1dP-4uF1FhkkIUSqZKUyhCRdJypkWNNG6ECa3YCCmRRFLLRRwDVopmkgAzQm1AiDJWcwUm6HrfW_bue_e-pDVpTfj06qxrveZBEEopTAG6T5oOud9Z4us7cpadUMGJNsZzf6MZkJme6Pj0dWhvde1zf9PDgrZLzDvdOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71602221</pqid></control><display><type>article</type><title>Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent</title><source>American Physical Society Journals</source><creator>Lu, Z-Y ; Hentschke, R</creator><creatorcontrib>Lu, Z-Y ; Hentschke, R</creatorcontrib><description>The swelling of a model polyelectrolyte gel is studied via three-dimensional molecular dynamics simulations, taking into account the counterions and the solvent explicitly. Each network bead carries a charge q(*). The counterion charge is -q(*), and thus the total system is neutral. The solvent is modeled via a Stockmayer fluid, i.e., each solvent particle is a point dipole plus a Lennard-Jones interaction center. A "two-box--particle transfer" simulation method is applied to calculate the swelling ratio of the network as well as the counterion mobility. The swelling of the network shows a broad maximum as a function of q(*) at T(*)(r)=T(*)/T(*)(c)=1.05 and P(*)(r)=P(*)/P(*)(c)=1.0. Here, T(*)(c) and P(*)(c) are the critical temperature and the critical pressure of the pure Stockmayer solvent, respectively, with dipole moments given by mu(*2)=1.0, 2.0, 3.0, and 4.0. The residence time of the counterions is calculated, showing a strong coupling to the charged network beads (condensation) as q(*) increases. Additional simulations at three different charge strengths (i.e., q(*)=0.5, 3.5, and 8.6) illustrate the complicated swelling behavior of the network under supercritical and subcritical conditions.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.67.061807</identifier><identifier>PMID: 16241254</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-06, Vol.67 (6 Pt 1), p.061807-061807, Article 061807</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-973cfcfb0568953b628bbf6cde1c142ff47b6a15b1baa28711b502e6118d343a3</citedby><cites>FETCH-LOGICAL-c371t-973cfcfb0568953b628bbf6cde1c142ff47b6a15b1baa28711b502e6118d343a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16241254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Z-Y</creatorcontrib><creatorcontrib>Hentschke, R</creatorcontrib><title>Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The swelling of a model polyelectrolyte gel is studied via three-dimensional molecular dynamics simulations, taking into account the counterions and the solvent explicitly. Each network bead carries a charge q(*). The counterion charge is -q(*), and thus the total system is neutral. The solvent is modeled via a Stockmayer fluid, i.e., each solvent particle is a point dipole plus a Lennard-Jones interaction center. A "two-box--particle transfer" simulation method is applied to calculate the swelling ratio of the network as well as the counterion mobility. The swelling of the network shows a broad maximum as a function of q(*) at T(*)(r)=T(*)/T(*)(c)=1.05 and P(*)(r)=P(*)/P(*)(c)=1.0. Here, T(*)(c) and P(*)(c) are the critical temperature and the critical pressure of the pure Stockmayer solvent, respectively, with dipole moments given by mu(*2)=1.0, 2.0, 3.0, and 4.0. The residence time of the counterions is calculated, showing a strong coupling to the charged network beads (condensation) as q(*) increases. Additional simulations at three different charge strengths (i.e., q(*)=0.5, 3.5, and 8.6) illustrate the complicated swelling behavior of the network under supercritical and subcritical conditions.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwAyyQV-xSPHZsJ0tUlYdUCcRjwyayHacNJHGInaL8PalaxGqONHeuRgehSyBzAMJunjeDf7Hb5VzIORGQEHmEpkBSHjGZyOOROUtH5nyCzrz_JIRRlsSnaAKCxkB5PEUfC1e3fbAd9mXdVyqUrsE-9PmARwgbi_2PraqyWWNXYIVbVw22siZ0IwSL17bCehgXr8GZr1oNuyZXbW0TztFJoSpvLw5zht7vlm-Lh2j1dP-4uF1FhkkIUSqZKUyhCRdJypkWNNG6ECa3YCCmRRFLLRRwDVopmkgAzQm1AiDJWcwUm6HrfW_bue_e-pDVpTfj06qxrveZBEEopTAG6T5oOud9Z4us7cpadUMGJNsZzf6MZkJme6Pj0dWhvde1zf9PDgrZLzDvdOE</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Lu, Z-Y</creator><creator>Hentschke, R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030601</creationdate><title>Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent</title><author>Lu, Z-Y ; Hentschke, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-973cfcfb0568953b628bbf6cde1c142ff47b6a15b1baa28711b502e6118d343a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Z-Y</creatorcontrib><creatorcontrib>Hentschke, R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Z-Y</au><au>Hentschke, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2003-06-01</date><risdate>2003</risdate><volume>67</volume><issue>6 Pt 1</issue><spage>061807</spage><epage>061807</epage><pages>061807-061807</pages><artnum>061807</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>The swelling of a model polyelectrolyte gel is studied via three-dimensional molecular dynamics simulations, taking into account the counterions and the solvent explicitly. Each network bead carries a charge q(*). The counterion charge is -q(*), and thus the total system is neutral. The solvent is modeled via a Stockmayer fluid, i.e., each solvent particle is a point dipole plus a Lennard-Jones interaction center. A "two-box--particle transfer" simulation method is applied to calculate the swelling ratio of the network as well as the counterion mobility. The swelling of the network shows a broad maximum as a function of q(*) at T(*)(r)=T(*)/T(*)(c)=1.05 and P(*)(r)=P(*)/P(*)(c)=1.0. Here, T(*)(c) and P(*)(c) are the critical temperature and the critical pressure of the pure Stockmayer solvent, respectively, with dipole moments given by mu(*2)=1.0, 2.0, 3.0, and 4.0. The residence time of the counterions is calculated, showing a strong coupling to the charged network beads (condensation) as q(*) increases. Additional simulations at three different charge strengths (i.e., q(*)=0.5, 3.5, and 8.6) illustrate the complicated swelling behavior of the network under supercritical and subcritical conditions.</abstract><cop>United States</cop><pmid>16241254</pmid><doi>10.1103/PhysRevE.67.061807</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-06, Vol.67 (6 Pt 1), p.061807-061807, Article 061807 |
issn | 1539-3755 1063-651X 1095-3787 |
language | eng |
recordid | cdi_proquest_miscellaneous_71602221 |
source | American Physical Society Journals |
title | Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20study%20on%20the%20swelling%20of%20a%20polyelectrolyte%20gel%20by%20a%20Stockmayer%20solvent&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Lu,%20Z-Y&rft.date=2003-06-01&rft.volume=67&rft.issue=6%20Pt%201&rft.spage=061807&rft.epage=061807&rft.pages=061807-061807&rft.artnum=061807&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.67.061807&rft_dat=%3Cproquest_cross%3E71602221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71602221&rft_id=info:pmid/16241254&rfr_iscdi=true |