Quantitative analysis of adiabatic fast passage for steady laminar and turbulent flows

Adiabatic fast passage (AFP) is used in noninvasive quantitative perfusion experiments to invert (or label) arterial spins. Continuous arterial spin labeling (CASL) experiments conducted in vivo often assume the inversion efficiency based on the labeling field and steady flow conditions, without dir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2002-04, Vol.47 (4), p.709-719
Hauptverfasser: Gach, H. Michael, Kam, Anthony W., Reid, Eric D., Talagala, S. Lalith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 719
container_issue 4
container_start_page 709
container_title Magnetic resonance in medicine
container_volume 47
creator Gach, H. Michael
Kam, Anthony W.
Reid, Eric D.
Talagala, S. Lalith
description Adiabatic fast passage (AFP) is used in noninvasive quantitative perfusion experiments to invert (or label) arterial spins. Continuous arterial spin labeling (CASL) experiments conducted in vivo often assume the inversion efficiency based on the labeling field and steady flow conditions, without direct verification. In practice, the labeling field used in CASL is often amplitude‐ and duty cycle‐limited due to hardware or specific absorption rate constraints. In this study, the effects of the labeling field amplitude and duty cycle, and flow dynamics on the inversion efficiency of AFP were examined under steady flow conditions in a saline flow phantom. The experimental results were in general agreement with models based on Zhernovoi's theory except at high labeling field amplitudes, when the spin inversion times are at least half of the duration of the labeling pulse. The nonlinear relation observed between the inversion efficiency and the labeling duty cycle implies that the practice of linear derating the inversion efficiency with the labeling duty cycle may be prone to significant error. A secondary finding was that the T1 of the flowing fluid could be calculated based on the flow dynamics after varying the flow rate. Magn Reson Med 47:709–719, 2002. © 2002 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.10122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71601291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71601291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4242-b0fa4e6130e9ea26375012f0022f635e9400fdcaae9a5f35f76e62d22d99ec873</originalsourceid><addsrcrecordid>eNp1kE1P3DAQhq0KVBbaQ_9A5QuVOAT8lbg-VqhAJaDq99GaTcaVi5MsngS6_74uu4VTT7ZGzzuj92HslRTHUgh10ue-fKRSz9hC1kpVqnZmhy2ENaLS0pk9tk_0SwjhnDXP2Z4ss7dWqwX7_mmGYYoTTPEOOQyQ1hSJj4FDF2FZxi0PQBNfARH8RB7GzGlC6NY8QR8HyCXV8WnOyznhMPGQxnt6wXYDJMKX2_eAfTt7__X0orr8eP7h9N1l1RplVLUUAQw2Ugt0CKrRti41QumkQqNrdEaI0LUA6KAOug62wUZ1SnXOYVsaHLA3m72rPN7OSJPvI7WYEgw4zuStbMpCJwt4tAHbPBJlDH6VYw957aXwfyX6ItE_SCzs6-3Sedlj90RurRXgcAsAtZBChqGN9MTp2jZGucKdbLj7mHD9_4v-6vPVv9PVJhGL49-PCcg3vrHFjv9xfe7thftia6290H8AOECXkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71601291</pqid></control><display><type>article</type><title>Quantitative analysis of adiabatic fast passage for steady laminar and turbulent flows</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Gach, H. Michael ; Kam, Anthony W. ; Reid, Eric D. ; Talagala, S. Lalith</creator><creatorcontrib>Gach, H. Michael ; Kam, Anthony W. ; Reid, Eric D. ; Talagala, S. Lalith</creatorcontrib><description>Adiabatic fast passage (AFP) is used in noninvasive quantitative perfusion experiments to invert (or label) arterial spins. Continuous arterial spin labeling (CASL) experiments conducted in vivo often assume the inversion efficiency based on the labeling field and steady flow conditions, without direct verification. In practice, the labeling field used in CASL is often amplitude‐ and duty cycle‐limited due to hardware or specific absorption rate constraints. In this study, the effects of the labeling field amplitude and duty cycle, and flow dynamics on the inversion efficiency of AFP were examined under steady flow conditions in a saline flow phantom. The experimental results were in general agreement with models based on Zhernovoi's theory except at high labeling field amplitudes, when the spin inversion times are at least half of the duration of the labeling pulse. The nonlinear relation observed between the inversion efficiency and the labeling duty cycle implies that the practice of linear derating the inversion efficiency with the labeling duty cycle may be prone to significant error. A secondary finding was that the T1 of the flowing fluid could be calculated based on the flow dynamics after varying the flow rate. Magn Reson Med 47:709–719, 2002. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.10122</identifier><identifier>PMID: 11948732</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>adiabatic fast passage ; arterial spin labeling ; Biological and medical sciences ; Blood Flow Velocity ; Humans ; Image Processing, Computer-Assisted - methods ; inversion efficiency ; Investigative techniques, diagnostic techniques (general aspects) ; labeling duty cycle ; Magnetic Resonance Imaging - methods ; Medical sciences ; Miscellaneous. Technology ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Spin Labels ; steady flow</subject><ispartof>Magnetic resonance in medicine, 2002-04, Vol.47 (4), p.709-719</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2002 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4242-b0fa4e6130e9ea26375012f0022f635e9400fdcaae9a5f35f76e62d22d99ec873</citedby><cites>FETCH-LOGICAL-c4242-b0fa4e6130e9ea26375012f0022f635e9400fdcaae9a5f35f76e62d22d99ec873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.10122$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.10122$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13576429$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11948732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gach, H. Michael</creatorcontrib><creatorcontrib>Kam, Anthony W.</creatorcontrib><creatorcontrib>Reid, Eric D.</creatorcontrib><creatorcontrib>Talagala, S. Lalith</creatorcontrib><title>Quantitative analysis of adiabatic fast passage for steady laminar and turbulent flows</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Adiabatic fast passage (AFP) is used in noninvasive quantitative perfusion experiments to invert (or label) arterial spins. Continuous arterial spin labeling (CASL) experiments conducted in vivo often assume the inversion efficiency based on the labeling field and steady flow conditions, without direct verification. In practice, the labeling field used in CASL is often amplitude‐ and duty cycle‐limited due to hardware or specific absorption rate constraints. In this study, the effects of the labeling field amplitude and duty cycle, and flow dynamics on the inversion efficiency of AFP were examined under steady flow conditions in a saline flow phantom. The experimental results were in general agreement with models based on Zhernovoi's theory except at high labeling field amplitudes, when the spin inversion times are at least half of the duration of the labeling pulse. The nonlinear relation observed between the inversion efficiency and the labeling duty cycle implies that the practice of linear derating the inversion efficiency with the labeling duty cycle may be prone to significant error. A secondary finding was that the T1 of the flowing fluid could be calculated based on the flow dynamics after varying the flow rate. Magn Reson Med 47:709–719, 2002. © 2002 Wiley‐Liss, Inc.</description><subject>adiabatic fast passage</subject><subject>arterial spin labeling</subject><subject>Biological and medical sciences</subject><subject>Blood Flow Velocity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>inversion efficiency</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>labeling duty cycle</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Spin Labels</subject><subject>steady flow</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1P3DAQhq0KVBbaQ_9A5QuVOAT8lbg-VqhAJaDq99GaTcaVi5MsngS6_74uu4VTT7ZGzzuj92HslRTHUgh10ue-fKRSz9hC1kpVqnZmhy2ENaLS0pk9tk_0SwjhnDXP2Z4ss7dWqwX7_mmGYYoTTPEOOQyQ1hSJj4FDF2FZxi0PQBNfARH8RB7GzGlC6NY8QR8HyCXV8WnOyznhMPGQxnt6wXYDJMKX2_eAfTt7__X0orr8eP7h9N1l1RplVLUUAQw2Ugt0CKrRti41QumkQqNrdEaI0LUA6KAOug62wUZ1SnXOYVsaHLA3m72rPN7OSJPvI7WYEgw4zuStbMpCJwt4tAHbPBJlDH6VYw957aXwfyX6ItE_SCzs6-3Sedlj90RurRXgcAsAtZBChqGN9MTp2jZGucKdbLj7mHD9_4v-6vPVv9PVJhGL49-PCcg3vrHFjv9xfe7thftia6290H8AOECXkw</recordid><startdate>200204</startdate><enddate>200204</enddate><creator>Gach, H. Michael</creator><creator>Kam, Anthony W.</creator><creator>Reid, Eric D.</creator><creator>Talagala, S. Lalith</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Williams &amp; Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200204</creationdate><title>Quantitative analysis of adiabatic fast passage for steady laminar and turbulent flows</title><author>Gach, H. Michael ; Kam, Anthony W. ; Reid, Eric D. ; Talagala, S. Lalith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4242-b0fa4e6130e9ea26375012f0022f635e9400fdcaae9a5f35f76e62d22d99ec873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>adiabatic fast passage</topic><topic>arterial spin labeling</topic><topic>Biological and medical sciences</topic><topic>Blood Flow Velocity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>inversion efficiency</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>labeling duty cycle</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Spin Labels</topic><topic>steady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gach, H. Michael</creatorcontrib><creatorcontrib>Kam, Anthony W.</creatorcontrib><creatorcontrib>Reid, Eric D.</creatorcontrib><creatorcontrib>Talagala, S. Lalith</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gach, H. Michael</au><au>Kam, Anthony W.</au><au>Reid, Eric D.</au><au>Talagala, S. Lalith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of adiabatic fast passage for steady laminar and turbulent flows</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2002-04</date><risdate>2002</risdate><volume>47</volume><issue>4</issue><spage>709</spage><epage>719</epage><pages>709-719</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Adiabatic fast passage (AFP) is used in noninvasive quantitative perfusion experiments to invert (or label) arterial spins. Continuous arterial spin labeling (CASL) experiments conducted in vivo often assume the inversion efficiency based on the labeling field and steady flow conditions, without direct verification. In practice, the labeling field used in CASL is often amplitude‐ and duty cycle‐limited due to hardware or specific absorption rate constraints. In this study, the effects of the labeling field amplitude and duty cycle, and flow dynamics on the inversion efficiency of AFP were examined under steady flow conditions in a saline flow phantom. The experimental results were in general agreement with models based on Zhernovoi's theory except at high labeling field amplitudes, when the spin inversion times are at least half of the duration of the labeling pulse. The nonlinear relation observed between the inversion efficiency and the labeling duty cycle implies that the practice of linear derating the inversion efficiency with the labeling duty cycle may be prone to significant error. A secondary finding was that the T1 of the flowing fluid could be calculated based on the flow dynamics after varying the flow rate. Magn Reson Med 47:709–719, 2002. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11948732</pmid><doi>10.1002/mrm.10122</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2002-04, Vol.47 (4), p.709-719
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_71601291
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects adiabatic fast passage
arterial spin labeling
Biological and medical sciences
Blood Flow Velocity
Humans
Image Processing, Computer-Assisted - methods
inversion efficiency
Investigative techniques, diagnostic techniques (general aspects)
labeling duty cycle
Magnetic Resonance Imaging - methods
Medical sciences
Miscellaneous. Technology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Spin Labels
steady flow
title Quantitative analysis of adiabatic fast passage for steady laminar and turbulent flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20adiabatic%20fast%20passage%20for%20steady%20laminar%20and%20turbulent%20flows&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Gach,%20H.%20Michael&rft.date=2002-04&rft.volume=47&rft.issue=4&rft.spage=709&rft.epage=719&rft.pages=709-719&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.10122&rft_dat=%3Cproquest_cross%3E71601291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71601291&rft_id=info:pmid/11948732&rfr_iscdi=true