Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization
In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid,...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2002-05, Vol.78 (4), p.395-402 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 402 |
---|---|
container_issue | 4 |
container_start_page | 395 |
container_title | Biotechnology and bioengineering |
container_volume | 78 |
creator | Diender, M. B. Straathof, A. J. J. van der Does, T. Ras, C. Heijnen, J. J. |
description | In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis.
We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002. |
doi_str_mv | 10.1002/bit.10242 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71597937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18377282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBmALUdGhsOAFkDcgsUjrW3xZ0qoMrUZcpAJLy3Ecakjiqe3QpjveHE9nSleIlW3p-8-x9APwAqNDjBA5anwuF8LII7DASIkKEYUegwVCiFe0VmQfPE3pR3kKyfkTsI-xYpIxvgC_T68m3_sm-mmAQ2hd78fvMHTQ3eRobPa_HHTj7TyY7C28nNsY-jn5tCFrN3rr-5KAS3jt8yW0YbRh8NmMGfLKDH4M98iUAxrrW2jjnLIpsdsyM4zPwF5n-uSe784D8OXd6cXJ-2r1cXl28nZVWVYLUimrOtxworjDjZCGNkbatqPEcS6wbHitDLWyYcR2irVGOsVt08m6VdSZztAD8Ho7dx3D1eRS1oNP1m1-5sKUtMC1EoqK_0IsqRBEkgLfbKGNIaXoOr2OfjBx1hjpTTG6FKPviin25W7o1AyufZC7Jgp4tQMmWdN30YzWpwfHsORKsOKOtu7a927-90Z9fHZxv7raJnzK7uZvwsSfmgsqav3tw1Kz88_0K6pX-hP9A75Pt2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18377282</pqid></control><display><type>article</type><title>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Diender, M. B. ; Straathof, A. J. J. ; van der Does, T. ; Ras, C. ; Heijnen, J. J.</creator><creatorcontrib>Diender, M. B. ; Straathof, A. J. J. ; van der Does, T. ; Ras, C. ; Heijnen, J. J.</creatorcontrib><description>In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis.
We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10242</identifier><identifier>PMID: 11948446</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetates - metabolism ; Antibiotics ; Biological and medical sciences ; Biotechnology ; Catalysis ; Chromatography, High Pressure Liquid - methods ; Computer Simulation ; Crystallization ; equilibrium prediction ; Escherichia coli - enzymology ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glycine - analogs & derivatives ; Glycine - chemistry ; Health. Pharmaceutical industry ; Hydrogen-Ion Concentration ; Hydrolysis ; Industrial applications and implications. Economical aspects ; Models, Chemical ; multiphase systems ; partitioning ; Penicillanic Acid - analogs & derivatives ; Penicillanic Acid - chemistry ; Penicillanic Acid - isolation & purification ; Penicillanic Acid - metabolism ; Penicillin Amidase - metabolism ; penicillin G ; Penicillin G - isolation & purification ; Penicillin G - metabolism ; Potassium - chemistry ; Production of active biomolecules ; Reproducibility of Results ; Sensitivity and Specificity ; Water - chemistry</subject><ispartof>Biotechnology and bioengineering, 2002-05, Vol.78 (4), p.395-402</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2002 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</citedby><cites>FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10242$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10242$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14186974$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11948446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diender, M. B.</creatorcontrib><creatorcontrib>Straathof, A. J. J.</creatorcontrib><creatorcontrib>van der Does, T.</creatorcontrib><creatorcontrib>Ras, C.</creatorcontrib><creatorcontrib>Heijnen, J. J.</creatorcontrib><title>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis.
We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002.</description><subject>Acetates - metabolism</subject><subject>Antibiotics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Computer Simulation</subject><subject>Crystallization</subject><subject>equilibrium prediction</subject><subject>Escherichia coli - enzymology</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine - analogs & derivatives</subject><subject>Glycine - chemistry</subject><subject>Health. Pharmaceutical industry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Models, Chemical</subject><subject>multiphase systems</subject><subject>partitioning</subject><subject>Penicillanic Acid - analogs & derivatives</subject><subject>Penicillanic Acid - chemistry</subject><subject>Penicillanic Acid - isolation & purification</subject><subject>Penicillanic Acid - metabolism</subject><subject>Penicillin Amidase - metabolism</subject><subject>penicillin G</subject><subject>Penicillin G - isolation & purification</subject><subject>Penicillin G - metabolism</subject><subject>Potassium - chemistry</subject><subject>Production of active biomolecules</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Water - chemistry</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUBmALUdGhsOAFkDcgsUjrW3xZ0qoMrUZcpAJLy3Ecakjiqe3QpjveHE9nSleIlW3p-8-x9APwAqNDjBA5anwuF8LII7DASIkKEYUegwVCiFe0VmQfPE3pR3kKyfkTsI-xYpIxvgC_T68m3_sm-mmAQ2hd78fvMHTQ3eRobPa_HHTj7TyY7C28nNsY-jn5tCFrN3rr-5KAS3jt8yW0YbRh8NmMGfLKDH4M98iUAxrrW2jjnLIpsdsyM4zPwF5n-uSe784D8OXd6cXJ-2r1cXl28nZVWVYLUimrOtxworjDjZCGNkbatqPEcS6wbHitDLWyYcR2irVGOsVt08m6VdSZztAD8Ho7dx3D1eRS1oNP1m1-5sKUtMC1EoqK_0IsqRBEkgLfbKGNIaXoOr2OfjBx1hjpTTG6FKPviin25W7o1AyufZC7Jgp4tQMmWdN30YzWpwfHsORKsOKOtu7a927-90Z9fHZxv7raJnzK7uZvwsSfmgsqav3tw1Kz88_0K6pX-hP9A75Pt2w</recordid><startdate>20020520</startdate><enddate>20020520</enddate><creator>Diender, M. B.</creator><creator>Straathof, A. J. J.</creator><creator>van der Does, T.</creator><creator>Ras, C.</creator><creator>Heijnen, J. J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020520</creationdate><title>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</title><author>Diender, M. B. ; Straathof, A. J. J. ; van der Does, T. ; Ras, C. ; Heijnen, J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acetates - metabolism</topic><topic>Antibiotics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Computer Simulation</topic><topic>Crystallization</topic><topic>equilibrium prediction</topic><topic>Escherichia coli - enzymology</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine - analogs & derivatives</topic><topic>Glycine - chemistry</topic><topic>Health. Pharmaceutical industry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Models, Chemical</topic><topic>multiphase systems</topic><topic>partitioning</topic><topic>Penicillanic Acid - analogs & derivatives</topic><topic>Penicillanic Acid - chemistry</topic><topic>Penicillanic Acid - isolation & purification</topic><topic>Penicillanic Acid - metabolism</topic><topic>Penicillin Amidase - metabolism</topic><topic>penicillin G</topic><topic>Penicillin G - isolation & purification</topic><topic>Penicillin G - metabolism</topic><topic>Potassium - chemistry</topic><topic>Production of active biomolecules</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diender, M. B.</creatorcontrib><creatorcontrib>Straathof, A. J. J.</creatorcontrib><creatorcontrib>van der Does, T.</creatorcontrib><creatorcontrib>Ras, C.</creatorcontrib><creatorcontrib>Heijnen, J. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diender, M. B.</au><au>Straathof, A. J. J.</au><au>van der Does, T.</au><au>Ras, C.</au><au>Heijnen, J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2002-05-20</date><risdate>2002</risdate><volume>78</volume><issue>4</issue><spage>395</spage><epage>402</epage><pages>395-402</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis.
We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11948446</pmid><doi>10.1002/bit.10242</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2002-05, Vol.78 (4), p.395-402 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_71597937 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acetates - metabolism Antibiotics Biological and medical sciences Biotechnology Catalysis Chromatography, High Pressure Liquid - methods Computer Simulation Crystallization equilibrium prediction Escherichia coli - enzymology Fermentation Fundamental and applied biological sciences. Psychology Glycine - analogs & derivatives Glycine - chemistry Health. Pharmaceutical industry Hydrogen-Ion Concentration Hydrolysis Industrial applications and implications. Economical aspects Models, Chemical multiphase systems partitioning Penicillanic Acid - analogs & derivatives Penicillanic Acid - chemistry Penicillanic Acid - isolation & purification Penicillanic Acid - metabolism Penicillin Amidase - metabolism penicillin G Penicillin G - isolation & purification Penicillin G - metabolism Potassium - chemistry Production of active biomolecules Reproducibility of Results Sensitivity and Specificity Water - chemistry |
title | Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20modeling%20of%20extractive%20enzymatic%20hydrolysis%20of%20penicillin%20G%20with%20concomitant%206-aminopenicillanic%20acid%20crystallization&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Diender,%20M.%20B.&rft.date=2002-05-20&rft.volume=78&rft.issue=4&rft.spage=395&rft.epage=402&rft.pages=395-402&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.10242&rft_dat=%3Cproquest_cross%3E18377282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18377282&rft_id=info:pmid/11948446&rfr_iscdi=true |