Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization

In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2002-05, Vol.78 (4), p.395-402
Hauptverfasser: Diender, M. B., Straathof, A. J. J., van der Does, T., Ras, C., Heijnen, J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 4
container_start_page 395
container_title Biotechnology and bioengineering
container_volume 78
creator Diender, M. B.
Straathof, A. J. J.
van der Does, T.
Ras, C.
Heijnen, J. J.
description In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis. We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002.
doi_str_mv 10.1002/bit.10242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71597937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18377282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBmALUdGhsOAFkDcgsUjrW3xZ0qoMrUZcpAJLy3Ecakjiqe3QpjveHE9nSleIlW3p-8-x9APwAqNDjBA5anwuF8LII7DASIkKEYUegwVCiFe0VmQfPE3pR3kKyfkTsI-xYpIxvgC_T68m3_sm-mmAQ2hd78fvMHTQ3eRobPa_HHTj7TyY7C28nNsY-jn5tCFrN3rr-5KAS3jt8yW0YbRh8NmMGfLKDH4M98iUAxrrW2jjnLIpsdsyM4zPwF5n-uSe784D8OXd6cXJ-2r1cXl28nZVWVYLUimrOtxworjDjZCGNkbatqPEcS6wbHitDLWyYcR2irVGOsVt08m6VdSZztAD8Ho7dx3D1eRS1oNP1m1-5sKUtMC1EoqK_0IsqRBEkgLfbKGNIaXoOr2OfjBx1hjpTTG6FKPviin25W7o1AyufZC7Jgp4tQMmWdN30YzWpwfHsORKsOKOtu7a927-90Z9fHZxv7raJnzK7uZvwsSfmgsqav3tw1Kz88_0K6pX-hP9A75Pt2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18377282</pqid></control><display><type>article</type><title>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Diender, M. B. ; Straathof, A. J. J. ; van der Does, T. ; Ras, C. ; Heijnen, J. J.</creator><creatorcontrib>Diender, M. B. ; Straathof, A. J. J. ; van der Does, T. ; Ras, C. ; Heijnen, J. J.</creatorcontrib><description>In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis. We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10242</identifier><identifier>PMID: 11948446</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acetates - metabolism ; Antibiotics ; Biological and medical sciences ; Biotechnology ; Catalysis ; Chromatography, High Pressure Liquid - methods ; Computer Simulation ; Crystallization ; equilibrium prediction ; Escherichia coli - enzymology ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glycine - analogs &amp; derivatives ; Glycine - chemistry ; Health. Pharmaceutical industry ; Hydrogen-Ion Concentration ; Hydrolysis ; Industrial applications and implications. Economical aspects ; Models, Chemical ; multiphase systems ; partitioning ; Penicillanic Acid - analogs &amp; derivatives ; Penicillanic Acid - chemistry ; Penicillanic Acid - isolation &amp; purification ; Penicillanic Acid - metabolism ; Penicillin Amidase - metabolism ; penicillin G ; Penicillin G - isolation &amp; purification ; Penicillin G - metabolism ; Potassium - chemistry ; Production of active biomolecules ; Reproducibility of Results ; Sensitivity and Specificity ; Water - chemistry</subject><ispartof>Biotechnology and bioengineering, 2002-05, Vol.78 (4), p.395-402</ispartof><rights>Copyright © 2002 Wiley Periodicals, Inc.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2002 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</citedby><cites>FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10242$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10242$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14186974$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11948446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diender, M. B.</creatorcontrib><creatorcontrib>Straathof, A. J. J.</creatorcontrib><creatorcontrib>van der Does, T.</creatorcontrib><creatorcontrib>Ras, C.</creatorcontrib><creatorcontrib>Heijnen, J. J.</creatorcontrib><title>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis. We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002.</description><subject>Acetates - metabolism</subject><subject>Antibiotics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Computer Simulation</subject><subject>Crystallization</subject><subject>equilibrium prediction</subject><subject>Escherichia coli - enzymology</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycine - analogs &amp; derivatives</subject><subject>Glycine - chemistry</subject><subject>Health. Pharmaceutical industry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Models, Chemical</subject><subject>multiphase systems</subject><subject>partitioning</subject><subject>Penicillanic Acid - analogs &amp; derivatives</subject><subject>Penicillanic Acid - chemistry</subject><subject>Penicillanic Acid - isolation &amp; purification</subject><subject>Penicillanic Acid - metabolism</subject><subject>Penicillin Amidase - metabolism</subject><subject>penicillin G</subject><subject>Penicillin G - isolation &amp; purification</subject><subject>Penicillin G - metabolism</subject><subject>Potassium - chemistry</subject><subject>Production of active biomolecules</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Water - chemistry</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUBmALUdGhsOAFkDcgsUjrW3xZ0qoMrUZcpAJLy3Ecakjiqe3QpjveHE9nSleIlW3p-8-x9APwAqNDjBA5anwuF8LII7DASIkKEYUegwVCiFe0VmQfPE3pR3kKyfkTsI-xYpIxvgC_T68m3_sm-mmAQ2hd78fvMHTQ3eRobPa_HHTj7TyY7C28nNsY-jn5tCFrN3rr-5KAS3jt8yW0YbRh8NmMGfLKDH4M98iUAxrrW2jjnLIpsdsyM4zPwF5n-uSe784D8OXd6cXJ-2r1cXl28nZVWVYLUimrOtxworjDjZCGNkbatqPEcS6wbHitDLWyYcR2irVGOsVt08m6VdSZztAD8Ho7dx3D1eRS1oNP1m1-5sKUtMC1EoqK_0IsqRBEkgLfbKGNIaXoOr2OfjBx1hjpTTG6FKPviin25W7o1AyufZC7Jgp4tQMmWdN30YzWpwfHsORKsOKOtu7a927-90Z9fHZxv7raJnzK7uZvwsSfmgsqav3tw1Kz88_0K6pX-hP9A75Pt2w</recordid><startdate>20020520</startdate><enddate>20020520</enddate><creator>Diender, M. B.</creator><creator>Straathof, A. J. J.</creator><creator>van der Does, T.</creator><creator>Ras, C.</creator><creator>Heijnen, J. J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020520</creationdate><title>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</title><author>Diender, M. B. ; Straathof, A. J. J. ; van der Does, T. ; Ras, C. ; Heijnen, J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4572-9c9f1b6296e1b78a3ba8cdf32e66718b659a3c8b42cf94da8e96cbf85d93eafa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acetates - metabolism</topic><topic>Antibiotics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Computer Simulation</topic><topic>Crystallization</topic><topic>equilibrium prediction</topic><topic>Escherichia coli - enzymology</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycine - analogs &amp; derivatives</topic><topic>Glycine - chemistry</topic><topic>Health. Pharmaceutical industry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Models, Chemical</topic><topic>multiphase systems</topic><topic>partitioning</topic><topic>Penicillanic Acid - analogs &amp; derivatives</topic><topic>Penicillanic Acid - chemistry</topic><topic>Penicillanic Acid - isolation &amp; purification</topic><topic>Penicillanic Acid - metabolism</topic><topic>Penicillin Amidase - metabolism</topic><topic>penicillin G</topic><topic>Penicillin G - isolation &amp; purification</topic><topic>Penicillin G - metabolism</topic><topic>Potassium - chemistry</topic><topic>Production of active biomolecules</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diender, M. B.</creatorcontrib><creatorcontrib>Straathof, A. J. J.</creatorcontrib><creatorcontrib>van der Does, T.</creatorcontrib><creatorcontrib>Ras, C.</creatorcontrib><creatorcontrib>Heijnen, J. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diender, M. B.</au><au>Straathof, A. J. J.</au><au>van der Does, T.</au><au>Ras, C.</au><au>Heijnen, J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2002-05-20</date><risdate>2002</risdate><volume>78</volume><issue>4</issue><spage>395</spage><epage>402</epage><pages>395-402</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>In the present downstream processing of penicillin G, penicillin G is extracted from the fermentation broth with an organic solvent and purified as a potassium salt via a number of back‐extraction and crystallization steps. After purification, penicillin G is hydrolyzed to 6‐aminopenicillanic acid, a precursor for many semisynthetic β‐lactam antibiotics. We are studying a reduction in the number of pH shifts involved and hence a large reduction in the waste salt production. To this end, the organic penicillin G extract is directly to be added to an aqueous immobilized enzyme suspension reactor and hydrolyzed by extractive catalysis. We found that this conversion can exceed 90% because crystallization of 6‐aminopenicillanic acid shifts the equilibrium to the product side. A model was developed for predicting the equilibrium conversion in batch systems containing both a water and a butyl acetate phase, with either potassium or D‐p‐hydroxyphenylglycine methyl ester as counter‐ion of penicillin G. The model incorporates the partitioning equilibrium of the reactants, the enzymatic reaction equilibrium, and the crystallization equilibrium of 6‐aminopenicillanic acid. The model predicted the equilibrium conversion of Pen G quite reasonably for different values of pH, initial penicillin G concentration and phase volume ratio. The model can be used as a tool for optimizing the enzymatic hydrolysis. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 395–402, 2002.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11948446</pmid><doi>10.1002/bit.10242</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2002-05, Vol.78 (4), p.395-402
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_71597937
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetates - metabolism
Antibiotics
Biological and medical sciences
Biotechnology
Catalysis
Chromatography, High Pressure Liquid - methods
Computer Simulation
Crystallization
equilibrium prediction
Escherichia coli - enzymology
Fermentation
Fundamental and applied biological sciences. Psychology
Glycine - analogs & derivatives
Glycine - chemistry
Health. Pharmaceutical industry
Hydrogen-Ion Concentration
Hydrolysis
Industrial applications and implications. Economical aspects
Models, Chemical
multiphase systems
partitioning
Penicillanic Acid - analogs & derivatives
Penicillanic Acid - chemistry
Penicillanic Acid - isolation & purification
Penicillanic Acid - metabolism
Penicillin Amidase - metabolism
penicillin G
Penicillin G - isolation & purification
Penicillin G - metabolism
Potassium - chemistry
Production of active biomolecules
Reproducibility of Results
Sensitivity and Specificity
Water - chemistry
title Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20modeling%20of%20extractive%20enzymatic%20hydrolysis%20of%20penicillin%20G%20with%20concomitant%206-aminopenicillanic%20acid%20crystallization&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Diender,%20M.%20B.&rft.date=2002-05-20&rft.volume=78&rft.issue=4&rft.spage=395&rft.epage=402&rft.pages=395-402&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.10242&rft_dat=%3Cproquest_cross%3E18377282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18377282&rft_id=info:pmid/11948446&rfr_iscdi=true