Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls

Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental nephrology 2002-01, Vol.10 (2), p.64-74
Hauptverfasser: Fryer, Ryan M., Randall, Jeffrey, Yoshida, Takumi, Hsiao, Li-Li, Blumenstock, Joshua, Jensen, Katharine E., Dimofte, Tudor, Jensen, Roderick V., Gullans, Steven R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 2
container_start_page 64
container_title Experimental nephrology
container_volume 10
creator Fryer, Ryan M.
Randall, Jeffrey
Yoshida, Takumi
Hsiao, Li-Li
Blumenstock, Joshua
Jensen, Katharine E.
Dimofte, Tudor
Jensen, Roderick V.
Gullans, Steven R.
description Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks.
doi_str_mv 10.1159/000049901
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71585672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71585672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</originalsourceid><addsrcrecordid>eNptkM1Lw0AQxdcvtNUePAsSPAhCozO72ezGW5FaC_XjoOAtbJOJRtOk7qag_72rrXpxLg_m_eYxPMb2EU4RZXIGfqIkAVxjXSFQA2jO-TrrYBxDyJEnG6yXKC00SKmEFnzTe4A6VErzHdZ17gWAc0TYZjuIiVBKig4bj6pmaqpgUJvqw5UuaIpgRDUFw_e5JefKpj4Prql9bnLXD8Z1S9bvW9N6ox-YOg_uyrYwVeX22JZXR72V7rKHy-H9xVU4uR2NLwaTMIu4aMMYslzIyMSaiiKWuuBTxEhJkABEGnkmdRSLSBv_KmWJBI0xyGgKCjglIHbZ8TJ3bpu3Bbk2nZUuo6oyNTULlyqUWsaKe_BkCWa2cc5Skc5tOTP2I0VIv0pNf0v17OEqdDGdUf5HrorywMESeDX2iewv8HN-9K87fLz5BtJ5XohPze9-hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71585672</pqid></control><display><type>article</type><title>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>Fryer, Ryan M. ; Randall, Jeffrey ; Yoshida, Takumi ; Hsiao, Li-Li ; Blumenstock, Joshua ; Jensen, Katharine E. ; Dimofte, Tudor ; Jensen, Roderick V. ; Gullans, Steven R.</creator><creatorcontrib>Fryer, Ryan M. ; Randall, Jeffrey ; Yoshida, Takumi ; Hsiao, Li-Li ; Blumenstock, Joshua ; Jensen, Katharine E. ; Dimofte, Tudor ; Jensen, Roderick V. ; Gullans, Steven R.</creatorcontrib><description>Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks.</description><identifier>ISSN: 1018-7782</identifier><identifier>ISSN: 1660-2129</identifier><identifier>ISBN: 9783805573832</identifier><identifier>ISBN: 3805573839</identifier><identifier>EISSN: 1660-2129</identifier><identifier>EISBN: 3318008222</identifier><identifier>EISBN: 9783318008227</identifier><identifier>DOI: 10.1159/000049901</identifier><identifier>PMID: 11937753</identifier><language>eng</language><publisher>Basel, Switzerland</publisher><subject>Computational Biology ; Genome, Human ; Humans ; Kidney Diseases - genetics ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Array Sequence Analysis - trends</subject><ispartof>Experimental nephrology, 2002-01, Vol.10 (2), p.64-74</ispartof><rights>2002 S. Karger AG, Basel</rights><rights>Copyright 2002 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</citedby><cites>FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2427,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11937753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fryer, Ryan M.</creatorcontrib><creatorcontrib>Randall, Jeffrey</creatorcontrib><creatorcontrib>Yoshida, Takumi</creatorcontrib><creatorcontrib>Hsiao, Li-Li</creatorcontrib><creatorcontrib>Blumenstock, Joshua</creatorcontrib><creatorcontrib>Jensen, Katharine E.</creatorcontrib><creatorcontrib>Dimofte, Tudor</creatorcontrib><creatorcontrib>Jensen, Roderick V.</creatorcontrib><creatorcontrib>Gullans, Steven R.</creatorcontrib><title>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</title><title>Experimental nephrology</title><addtitle>Nephron Exp Nephrol</addtitle><description>Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks.</description><subject>Computational Biology</subject><subject>Genome, Human</subject><subject>Humans</subject><subject>Kidney Diseases - genetics</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Array Sequence Analysis - trends</subject><issn>1018-7782</issn><issn>1660-2129</issn><issn>1660-2129</issn><isbn>9783805573832</isbn><isbn>3805573839</isbn><isbn>3318008222</isbn><isbn>9783318008227</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1Lw0AQxdcvtNUePAsSPAhCozO72ezGW5FaC_XjoOAtbJOJRtOk7qag_72rrXpxLg_m_eYxPMb2EU4RZXIGfqIkAVxjXSFQA2jO-TrrYBxDyJEnG6yXKC00SKmEFnzTe4A6VErzHdZ17gWAc0TYZjuIiVBKig4bj6pmaqpgUJvqw5UuaIpgRDUFw_e5JefKpj4Prql9bnLXD8Z1S9bvW9N6ox-YOg_uyrYwVeX22JZXR72V7rKHy-H9xVU4uR2NLwaTMIu4aMMYslzIyMSaiiKWuuBTxEhJkABEGnkmdRSLSBv_KmWJBI0xyGgKCjglIHbZ8TJ3bpu3Bbk2nZUuo6oyNTULlyqUWsaKe_BkCWa2cc5Skc5tOTP2I0VIv0pNf0v17OEqdDGdUf5HrorywMESeDX2iewv8HN-9K87fLz5BtJ5XohPze9-hg</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Fryer, Ryan M.</creator><creator>Randall, Jeffrey</creator><creator>Yoshida, Takumi</creator><creator>Hsiao, Li-Li</creator><creator>Blumenstock, Joshua</creator><creator>Jensen, Katharine E.</creator><creator>Dimofte, Tudor</creator><creator>Jensen, Roderick V.</creator><creator>Gullans, Steven R.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020101</creationdate><title>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</title><author>Fryer, Ryan M. ; Randall, Jeffrey ; Yoshida, Takumi ; Hsiao, Li-Li ; Blumenstock, Joshua ; Jensen, Katharine E. ; Dimofte, Tudor ; Jensen, Roderick V. ; Gullans, Steven R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computational Biology</topic><topic>Genome, Human</topic><topic>Humans</topic><topic>Kidney Diseases - genetics</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Array Sequence Analysis - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fryer, Ryan M.</creatorcontrib><creatorcontrib>Randall, Jeffrey</creatorcontrib><creatorcontrib>Yoshida, Takumi</creatorcontrib><creatorcontrib>Hsiao, Li-Li</creatorcontrib><creatorcontrib>Blumenstock, Joshua</creatorcontrib><creatorcontrib>Jensen, Katharine E.</creatorcontrib><creatorcontrib>Dimofte, Tudor</creatorcontrib><creatorcontrib>Jensen, Roderick V.</creatorcontrib><creatorcontrib>Gullans, Steven R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fryer, Ryan M.</au><au>Randall, Jeffrey</au><au>Yoshida, Takumi</au><au>Hsiao, Li-Li</au><au>Blumenstock, Joshua</au><au>Jensen, Katharine E.</au><au>Dimofte, Tudor</au><au>Jensen, Roderick V.</au><au>Gullans, Steven R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</atitle><jtitle>Experimental nephrology</jtitle><addtitle>Nephron Exp Nephrol</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>10</volume><issue>2</issue><spage>64</spage><epage>74</epage><pages>64-74</pages><issn>1018-7782</issn><issn>1660-2129</issn><eissn>1660-2129</eissn><isbn>9783805573832</isbn><isbn>3805573839</isbn><eisbn>3318008222</eisbn><eisbn>9783318008227</eisbn><abstract>Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks.</abstract><cop>Basel, Switzerland</cop><pmid>11937753</pmid><doi>10.1159/000049901</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1018-7782
ispartof Experimental nephrology, 2002-01, Vol.10 (2), p.64-74
issn 1018-7782
1660-2129
1660-2129
language eng
recordid cdi_proquest_miscellaneous_71585672
source MEDLINE; Karger Journals; Alma/SFX Local Collection
subjects Computational Biology
Genome, Human
Humans
Kidney Diseases - genetics
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - trends
title Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Analysis%20of%20Gene%20Expression:%20Methods,%20Interpretation,%20and%20Pitfalls&rft.jtitle=Experimental%20nephrology&rft.au=Fryer,%20Ryan%20M.&rft.date=2002-01-01&rft.volume=10&rft.issue=2&rft.spage=64&rft.epage=74&rft.pages=64-74&rft.issn=1018-7782&rft.eissn=1660-2129&rft.isbn=9783805573832&rft.isbn_list=3805573839&rft_id=info:doi/10.1159/000049901&rft_dat=%3Cproquest_cross%3E71585672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&rft.eisbn=3318008222&rft.eisbn_list=9783318008227&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71585672&rft_id=info:pmid/11937753&rfr_iscdi=true