Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls
Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analy...
Gespeichert in:
Veröffentlicht in: | Experimental nephrology 2002-01, Vol.10 (2), p.64-74 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 2 |
container_start_page | 64 |
container_title | Experimental nephrology |
container_volume | 10 |
creator | Fryer, Ryan M. Randall, Jeffrey Yoshida, Takumi Hsiao, Li-Li Blumenstock, Joshua Jensen, Katharine E. Dimofte, Tudor Jensen, Roderick V. Gullans, Steven R. |
description | Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks. |
doi_str_mv | 10.1159/000049901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71585672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71585672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</originalsourceid><addsrcrecordid>eNptkM1Lw0AQxdcvtNUePAsSPAhCozO72ezGW5FaC_XjoOAtbJOJRtOk7qag_72rrXpxLg_m_eYxPMb2EU4RZXIGfqIkAVxjXSFQA2jO-TrrYBxDyJEnG6yXKC00SKmEFnzTe4A6VErzHdZ17gWAc0TYZjuIiVBKig4bj6pmaqpgUJvqw5UuaIpgRDUFw_e5JefKpj4Prql9bnLXD8Z1S9bvW9N6ox-YOg_uyrYwVeX22JZXR72V7rKHy-H9xVU4uR2NLwaTMIu4aMMYslzIyMSaiiKWuuBTxEhJkABEGnkmdRSLSBv_KmWJBI0xyGgKCjglIHbZ8TJ3bpu3Bbk2nZUuo6oyNTULlyqUWsaKe_BkCWa2cc5Skc5tOTP2I0VIv0pNf0v17OEqdDGdUf5HrorywMESeDX2iewv8HN-9K87fLz5BtJ5XohPze9-hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71585672</pqid></control><display><type>article</type><title>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>Fryer, Ryan M. ; Randall, Jeffrey ; Yoshida, Takumi ; Hsiao, Li-Li ; Blumenstock, Joshua ; Jensen, Katharine E. ; Dimofte, Tudor ; Jensen, Roderick V. ; Gullans, Steven R.</creator><creatorcontrib>Fryer, Ryan M. ; Randall, Jeffrey ; Yoshida, Takumi ; Hsiao, Li-Li ; Blumenstock, Joshua ; Jensen, Katharine E. ; Dimofte, Tudor ; Jensen, Roderick V. ; Gullans, Steven R.</creatorcontrib><description>Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks.</description><identifier>ISSN: 1018-7782</identifier><identifier>ISSN: 1660-2129</identifier><identifier>ISBN: 9783805573832</identifier><identifier>ISBN: 3805573839</identifier><identifier>EISSN: 1660-2129</identifier><identifier>EISBN: 3318008222</identifier><identifier>EISBN: 9783318008227</identifier><identifier>DOI: 10.1159/000049901</identifier><identifier>PMID: 11937753</identifier><language>eng</language><publisher>Basel, Switzerland</publisher><subject>Computational Biology ; Genome, Human ; Humans ; Kidney Diseases - genetics ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Array Sequence Analysis - trends</subject><ispartof>Experimental nephrology, 2002-01, Vol.10 (2), p.64-74</ispartof><rights>2002 S. Karger AG, Basel</rights><rights>Copyright 2002 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</citedby><cites>FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2427,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11937753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fryer, Ryan M.</creatorcontrib><creatorcontrib>Randall, Jeffrey</creatorcontrib><creatorcontrib>Yoshida, Takumi</creatorcontrib><creatorcontrib>Hsiao, Li-Li</creatorcontrib><creatorcontrib>Blumenstock, Joshua</creatorcontrib><creatorcontrib>Jensen, Katharine E.</creatorcontrib><creatorcontrib>Dimofte, Tudor</creatorcontrib><creatorcontrib>Jensen, Roderick V.</creatorcontrib><creatorcontrib>Gullans, Steven R.</creatorcontrib><title>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</title><title>Experimental nephrology</title><addtitle>Nephron Exp Nephrol</addtitle><description>Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks.</description><subject>Computational Biology</subject><subject>Genome, Human</subject><subject>Humans</subject><subject>Kidney Diseases - genetics</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Array Sequence Analysis - trends</subject><issn>1018-7782</issn><issn>1660-2129</issn><issn>1660-2129</issn><isbn>9783805573832</isbn><isbn>3805573839</isbn><isbn>3318008222</isbn><isbn>9783318008227</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1Lw0AQxdcvtNUePAsSPAhCozO72ezGW5FaC_XjoOAtbJOJRtOk7qag_72rrXpxLg_m_eYxPMb2EU4RZXIGfqIkAVxjXSFQA2jO-TrrYBxDyJEnG6yXKC00SKmEFnzTe4A6VErzHdZ17gWAc0TYZjuIiVBKig4bj6pmaqpgUJvqw5UuaIpgRDUFw_e5JefKpj4Prql9bnLXD8Z1S9bvW9N6ox-YOg_uyrYwVeX22JZXR72V7rKHy-H9xVU4uR2NLwaTMIu4aMMYslzIyMSaiiKWuuBTxEhJkABEGnkmdRSLSBv_KmWJBI0xyGgKCjglIHbZ8TJ3bpu3Bbk2nZUuo6oyNTULlyqUWsaKe_BkCWa2cc5Skc5tOTP2I0VIv0pNf0v17OEqdDGdUf5HrorywMESeDX2iewv8HN-9K87fLz5BtJ5XohPze9-hg</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Fryer, Ryan M.</creator><creator>Randall, Jeffrey</creator><creator>Yoshida, Takumi</creator><creator>Hsiao, Li-Li</creator><creator>Blumenstock, Joshua</creator><creator>Jensen, Katharine E.</creator><creator>Dimofte, Tudor</creator><creator>Jensen, Roderick V.</creator><creator>Gullans, Steven R.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020101</creationdate><title>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</title><author>Fryer, Ryan M. ; Randall, Jeffrey ; Yoshida, Takumi ; Hsiao, Li-Li ; Blumenstock, Joshua ; Jensen, Katharine E. ; Dimofte, Tudor ; Jensen, Roderick V. ; Gullans, Steven R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-60cd354a68eff658f2b114750500ee812c5846348a110ec950816054b0702e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Computational Biology</topic><topic>Genome, Human</topic><topic>Humans</topic><topic>Kidney Diseases - genetics</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Array Sequence Analysis - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fryer, Ryan M.</creatorcontrib><creatorcontrib>Randall, Jeffrey</creatorcontrib><creatorcontrib>Yoshida, Takumi</creatorcontrib><creatorcontrib>Hsiao, Li-Li</creatorcontrib><creatorcontrib>Blumenstock, Joshua</creatorcontrib><creatorcontrib>Jensen, Katharine E.</creatorcontrib><creatorcontrib>Dimofte, Tudor</creatorcontrib><creatorcontrib>Jensen, Roderick V.</creatorcontrib><creatorcontrib>Gullans, Steven R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fryer, Ryan M.</au><au>Randall, Jeffrey</au><au>Yoshida, Takumi</au><au>Hsiao, Li-Li</au><au>Blumenstock, Joshua</au><au>Jensen, Katharine E.</au><au>Dimofte, Tudor</au><au>Jensen, Roderick V.</au><au>Gullans, Steven R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls</atitle><jtitle>Experimental nephrology</jtitle><addtitle>Nephron Exp Nephrol</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>10</volume><issue>2</issue><spage>64</spage><epage>74</epage><pages>64-74</pages><issn>1018-7782</issn><issn>1660-2129</issn><eissn>1660-2129</eissn><isbn>9783805573832</isbn><isbn>3805573839</isbn><eisbn>3318008222</eisbn><eisbn>9783318008227</eisbn><abstract>Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks.</abstract><cop>Basel, Switzerland</cop><pmid>11937753</pmid><doi>10.1159/000049901</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1018-7782 |
ispartof | Experimental nephrology, 2002-01, Vol.10 (2), p.64-74 |
issn | 1018-7782 1660-2129 1660-2129 |
language | eng |
recordid | cdi_proquest_miscellaneous_71585672 |
source | MEDLINE; Karger Journals; Alma/SFX Local Collection |
subjects | Computational Biology Genome, Human Humans Kidney Diseases - genetics Oligonucleotide Array Sequence Analysis - methods Oligonucleotide Array Sequence Analysis - trends |
title | Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Analysis%20of%20Gene%20Expression:%20Methods,%20Interpretation,%20and%20Pitfalls&rft.jtitle=Experimental%20nephrology&rft.au=Fryer,%20Ryan%20M.&rft.date=2002-01-01&rft.volume=10&rft.issue=2&rft.spage=64&rft.epage=74&rft.pages=64-74&rft.issn=1018-7782&rft.eissn=1660-2129&rft.isbn=9783805573832&rft.isbn_list=3805573839&rft_id=info:doi/10.1159/000049901&rft_dat=%3Cproquest_cross%3E71585672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&rft.eisbn=3318008222&rft.eisbn_list=9783318008227&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71585672&rft_id=info:pmid/11937753&rfr_iscdi=true |