Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers
Shot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2002-04, Vol.416 (6880), p.515-518 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 518 |
---|---|
container_issue | 6880 |
container_start_page | 515 |
container_title | Nature (London) |
container_volume | 416 |
creator | Heiblum, M Comforti, E Chung, Y. C Umansky, V Mahalu, D |
description | Shot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional to the charge of the quasiparticles; for example, at filling factor v=1/3, noise corresponding to q=e/3 appears. For increasingly opaque barriers, the measured charge increases monotonically, approaching q=e asymptotically. It was therefore believed that only electrons, or alternatively, three bunched quasiparticles, can tunnel through high-potential barriers encountered by a noiseless current of quasiparticles. Here we investigate the interaction of e/3 quasiparticles with a strong barrier in FQH samples and find that bunching of quasiparticles in the strong backscattering limit depends on the average dilution of the quasiparticle current. For a very dilute current, bunching ceases altogether and the transferred charge approaches q=e/3. This surprising result demonstrates that quasiparticles can tunnel individually through high-potential barriers originally thought to be opaque for them. |
doi_str_mv | 10.1038/416515a |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71576721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187500663</galeid><sourcerecordid>A187500663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-dcd797d1efa62fbf18422d314484c7e7cf33c26b89633d0327b9c6fe14f4126a3</originalsourceid><addsrcrecordid>eNqF0l2L1DAUBuAiijuu4i9QiqAi0jWn-epczg5-LCwKuiJ4U9I0abNk0k6SgvvvN8PUXUdWJBeB8JyTw-HNsqeATgDh6h0BRoGKe9kCCGcFYRW_ny0QKqsCVZgdZY9CuEQIUeDkYXYEsMQlx8tF9vN0crI3rssHnWsvZDSDE9Ze5bIXvlNtvp1EMKPw0UirQh4n55S1u4rY-2Hq-rw3XV-MQ1QuGmHzRnhvlA-Pswda2KCezPdx9v3D-4v1p-L8y8ez9eq8kJRBLFrZ8iVvQWnBSt1oqEhZthgIqYjkikuNsSxZUy0Zxi1KczdLybQCogmUTODj7NW-7-iH7aRCrDcmyDSjcGqYQs2BcsZL-C8sOSJQMZrgi7_g5TD5tJZkEKEAiPGEij3qhFW1cXqIaX2dcsoLOzilTXpeQcUpQiyNftP0wMvRbOs_0ckdKJ1WbYy8s-ubg4JkovoVOzGFUJ99-3po3_7bri5-rD8f6td7Lf0Qgle6Hr3ZCH9VA6p3oavn0CX5fF7X1GxUe-vmlCXwcgYiSGFTzJw04dZhWpWU7NyzvXMiTl7dgN8fXQPKEeQO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204511067</pqid></control><display><type>article</type><title>Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers</title><source>SpringerLink Journals</source><source>Nature</source><creator>Heiblum, M ; Comforti, E ; Chung, Y. C ; Umansky, V ; Mahalu, D</creator><creatorcontrib>Heiblum, M ; Comforti, E ; Chung, Y. C ; Umansky, V ; Mahalu, D</creatorcontrib><description>Shot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional to the charge of the quasiparticles; for example, at filling factor v=1/3, noise corresponding to q=e/3 appears. For increasingly opaque barriers, the measured charge increases monotonically, approaching q=e asymptotically. It was therefore believed that only electrons, or alternatively, three bunched quasiparticles, can tunnel through high-potential barriers encountered by a noiseless current of quasiparticles. Here we investigate the interaction of e/3 quasiparticles with a strong barrier in FQH samples and find that bunching of quasiparticles in the strong backscattering limit depends on the average dilution of the quasiparticle current. For a very dilute current, bunching ceases altogether and the transferred charge approaches q=e/3. This surprising result demonstrates that quasiparticles can tunnel individually through high-potential barriers originally thought to be opaque for them.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/416515a</identifier><identifier>PMID: 11932739</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Charged particles ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Exact sciences and technology ; Physics ; Quantum hall effect (including fractional)</subject><ispartof>Nature (London), 2002-04, Vol.416 (6880), p.515-518</ispartof><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Apr 4, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-dcd797d1efa62fbf18422d314484c7e7cf33c26b89633d0327b9c6fe14f4126a3</citedby><cites>FETCH-LOGICAL-c561t-dcd797d1efa62fbf18422d314484c7e7cf33c26b89633d0327b9c6fe14f4126a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13582549$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11932739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heiblum, M</creatorcontrib><creatorcontrib>Comforti, E</creatorcontrib><creatorcontrib>Chung, Y. C</creatorcontrib><creatorcontrib>Umansky, V</creatorcontrib><creatorcontrib>Mahalu, D</creatorcontrib><title>Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Shot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional to the charge of the quasiparticles; for example, at filling factor v=1/3, noise corresponding to q=e/3 appears. For increasingly opaque barriers, the measured charge increases monotonically, approaching q=e asymptotically. It was therefore believed that only electrons, or alternatively, three bunched quasiparticles, can tunnel through high-potential barriers encountered by a noiseless current of quasiparticles. Here we investigate the interaction of e/3 quasiparticles with a strong barrier in FQH samples and find that bunching of quasiparticles in the strong backscattering limit depends on the average dilution of the quasiparticle current. For a very dilute current, bunching ceases altogether and the transferred charge approaches q=e/3. This surprising result demonstrates that quasiparticles can tunnel individually through high-potential barriers originally thought to be opaque for them.</description><subject>Charged particles</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Quantum hall effect (including fractional)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0l2L1DAUBuAiijuu4i9QiqAi0jWn-epczg5-LCwKuiJ4U9I0abNk0k6SgvvvN8PUXUdWJBeB8JyTw-HNsqeATgDh6h0BRoGKe9kCCGcFYRW_ny0QKqsCVZgdZY9CuEQIUeDkYXYEsMQlx8tF9vN0crI3rssHnWsvZDSDE9Ze5bIXvlNtvp1EMKPw0UirQh4n55S1u4rY-2Hq-rw3XV-MQ1QuGmHzRnhvlA-Pswda2KCezPdx9v3D-4v1p-L8y8ez9eq8kJRBLFrZ8iVvQWnBSt1oqEhZthgIqYjkikuNsSxZUy0Zxi1KczdLybQCogmUTODj7NW-7-iH7aRCrDcmyDSjcGqYQs2BcsZL-C8sOSJQMZrgi7_g5TD5tJZkEKEAiPGEij3qhFW1cXqIaX2dcsoLOzilTXpeQcUpQiyNftP0wMvRbOs_0ckdKJ1WbYy8s-ubg4JkovoVOzGFUJ99-3po3_7bri5-rD8f6td7Lf0Qgle6Hr3ZCH9VA6p3oavn0CX5fF7X1GxUe-vmlCXwcgYiSGFTzJw04dZhWpWU7NyzvXMiTl7dgN8fXQPKEeQO</recordid><startdate>20020404</startdate><enddate>20020404</enddate><creator>Heiblum, M</creator><creator>Comforti, E</creator><creator>Chung, Y. C</creator><creator>Umansky, V</creator><creator>Mahalu, D</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20020404</creationdate><title>Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers</title><author>Heiblum, M ; Comforti, E ; Chung, Y. C ; Umansky, V ; Mahalu, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-dcd797d1efa62fbf18422d314484c7e7cf33c26b89633d0327b9c6fe14f4126a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Charged particles</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Quantum hall effect (including fractional)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heiblum, M</creatorcontrib><creatorcontrib>Comforti, E</creatorcontrib><creatorcontrib>Chung, Y. C</creatorcontrib><creatorcontrib>Umansky, V</creatorcontrib><creatorcontrib>Mahalu, D</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heiblum, M</au><au>Comforti, E</au><au>Chung, Y. C</au><au>Umansky, V</au><au>Mahalu, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2002-04-04</date><risdate>2002</risdate><volume>416</volume><issue>6880</issue><spage>515</spage><epage>518</epage><pages>515-518</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Shot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional to the charge of the quasiparticles; for example, at filling factor v=1/3, noise corresponding to q=e/3 appears. For increasingly opaque barriers, the measured charge increases monotonically, approaching q=e asymptotically. It was therefore believed that only electrons, or alternatively, three bunched quasiparticles, can tunnel through high-potential barriers encountered by a noiseless current of quasiparticles. Here we investigate the interaction of e/3 quasiparticles with a strong barrier in FQH samples and find that bunching of quasiparticles in the strong backscattering limit depends on the average dilution of the quasiparticle current. For a very dilute current, bunching ceases altogether and the transferred charge approaches q=e/3. This surprising result demonstrates that quasiparticles can tunnel individually through high-potential barriers originally thought to be opaque for them.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>11932739</pmid><doi>10.1038/416515a</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2002-04, Vol.416 (6880), p.515-518 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_71576721 |
source | SpringerLink Journals; Nature |
subjects | Charged particles Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in interface structures Exact sciences and technology Physics Quantum hall effect (including fractional) |
title | Bunching of fractionally charged quasiparticles tunnelling through high-potential barriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bunching%20of%20fractionally%20charged%20quasiparticles%20tunnelling%20through%20high-potential%20barriers&rft.jtitle=Nature%20(London)&rft.au=Heiblum,%20M&rft.date=2002-04-04&rft.volume=416&rft.issue=6880&rft.spage=515&rft.epage=518&rft.pages=515-518&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/416515a&rft_dat=%3Cgale_proqu%3EA187500663%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204511067&rft_id=info:pmid/11932739&rft_galeid=A187500663&rfr_iscdi=true |