Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus

Summary CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2002-02, Vol.43 (4), p.945-960
Hauptverfasser: Bellefontaine, Anne‐Flore, Pierreux, Christophe E., Mertens, Pascal, Vandenhaute, Jean, Letesson, Jean‐Jacques, Bolle, Xavier De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue 4
container_start_page 945
container_title Molecular microbiology
container_volume 43
creator Bellefontaine, Anne‐Flore
Pierreux, Christophe E.
Mertens, Pascal
Vandenhaute, Jean
Letesson, Jean‐Jacques
Bolle, Xavier De
description Summary CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.
doi_str_mv 10.1046/j.1365-2958.2002.02777.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71568357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>124069611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</originalsourceid><addsrcrecordid>eNqNkbtuFDEYRkcIRDaBV0AWBd0Ovozt2YIirCBESgQFSHTWP75svMyOB9ujZDsegYoH5EnwZFcg0UBlWz7f58upKkRwTXAjXm5rwgRf0hVva4oxrTGVUtZ3D6rF742H1QKvOF6yln4-qU5T2mJMGBbscXVCyKogTbOofnzoIWWvfd6j4BCgHGFIOvox-zBAj6LdTD3MCzTYfBviFwS7MGwQ9OMN_Pz2fYwh29CBzjZ6QD6hNI1jiNka1O1RvrHIGztk77w-9JRz1jmeowxxY3NCfkCv46Rt3wOCriSn9KR65KBP9ulxPKs-vX3zcf1uefX-4nJ9frXUjWRy2XAsuW20bExLCaVCMgaUgHbagTTYCAHAqDWdMQ6Ea4Bq7hwGQ3QrCGVn1YtDb3nF18mmrHY-3d9ksGFKShIuWsblP0HSMkJJgwv4_C9wG6ZYfrIwK8GJ5JQVqD1AOoaUonVqjH4Hca8IVrNhtVWzSDWLVLNhdW9Y3ZXos2P_1O2s-RM8Ki3AqwNw63u7_-9idX19Oc_YL9PWuYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196517523</pqid></control><display><type>article</type><title>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bellefontaine, Anne‐Flore ; Pierreux, Christophe E. ; Mertens, Pascal ; Vandenhaute, Jean ; Letesson, Jean‐Jacques ; Bolle, Xavier De</creator><creatorcontrib>Bellefontaine, Anne‐Flore ; Pierreux, Christophe E. ; Mertens, Pascal ; Vandenhaute, Jean ; Letesson, Jean‐Jacques ; Bolle, Xavier De</creatorcontrib><description>Summary CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2002.02777.x</identifier><identifier>PMID: 11929544</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Alphaproteobacteria ; Bacterial Proteins - genetics ; Base Sequence ; Brucella abortus ; Brucella abortus - genetics ; Brucella abortus - metabolism ; Caulobacter crescentus ; Caulobacter crescentus - genetics ; Caulobacter crescentus - metabolism ; CtrA protein ; Cytoskeletal Proteins ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Molecular Sequence Data ; Phosphorylation ; Promoter Regions, Genetic ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Replication Origin ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular microbiology, 2002-02, Vol.43 (4), p.945-960</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Feb 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</citedby><cites>FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2002.02777.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2002.02777.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11929544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellefontaine, Anne‐Flore</creatorcontrib><creatorcontrib>Pierreux, Christophe E.</creatorcontrib><creatorcontrib>Mertens, Pascal</creatorcontrib><creatorcontrib>Vandenhaute, Jean</creatorcontrib><creatorcontrib>Letesson, Jean‐Jacques</creatorcontrib><creatorcontrib>Bolle, Xavier De</creatorcontrib><title>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.</description><subject>Alphaproteobacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>Brucella abortus</subject><subject>Brucella abortus - genetics</subject><subject>Brucella abortus - metabolism</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - genetics</subject><subject>Caulobacter crescentus - metabolism</subject><subject>CtrA protein</subject><subject>Cytoskeletal Proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial</subject><subject>Molecular Sequence Data</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Replication Origin</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkbtuFDEYRkcIRDaBV0AWBd0Ovozt2YIirCBESgQFSHTWP75svMyOB9ujZDsegYoH5EnwZFcg0UBlWz7f58upKkRwTXAjXm5rwgRf0hVva4oxrTGVUtZ3D6rF742H1QKvOF6yln4-qU5T2mJMGBbscXVCyKogTbOofnzoIWWvfd6j4BCgHGFIOvox-zBAj6LdTD3MCzTYfBviFwS7MGwQ9OMN_Pz2fYwh29CBzjZ6QD6hNI1jiNka1O1RvrHIGztk77w-9JRz1jmeowxxY3NCfkCv46Rt3wOCriSn9KR65KBP9ulxPKs-vX3zcf1uefX-4nJ9frXUjWRy2XAsuW20bExLCaVCMgaUgHbagTTYCAHAqDWdMQ6Ea4Bq7hwGQ3QrCGVn1YtDb3nF18mmrHY-3d9ksGFKShIuWsblP0HSMkJJgwv4_C9wG6ZYfrIwK8GJ5JQVqD1AOoaUonVqjH4Hca8IVrNhtVWzSDWLVLNhdW9Y3ZXos2P_1O2s-RM8Ki3AqwNw63u7_-9idX19Oc_YL9PWuYI</recordid><startdate>200202</startdate><enddate>200202</enddate><creator>Bellefontaine, Anne‐Flore</creator><creator>Pierreux, Christophe E.</creator><creator>Mertens, Pascal</creator><creator>Vandenhaute, Jean</creator><creator>Letesson, Jean‐Jacques</creator><creator>Bolle, Xavier De</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200202</creationdate><title>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</title><author>Bellefontaine, Anne‐Flore ; Pierreux, Christophe E. ; Mertens, Pascal ; Vandenhaute, Jean ; Letesson, Jean‐Jacques ; Bolle, Xavier De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alphaproteobacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>Brucella abortus</topic><topic>Brucella abortus - genetics</topic><topic>Brucella abortus - metabolism</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - genetics</topic><topic>Caulobacter crescentus - metabolism</topic><topic>CtrA protein</topic><topic>Cytoskeletal Proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial</topic><topic>Molecular Sequence Data</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Replication Origin</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellefontaine, Anne‐Flore</creatorcontrib><creatorcontrib>Pierreux, Christophe E.</creatorcontrib><creatorcontrib>Mertens, Pascal</creatorcontrib><creatorcontrib>Vandenhaute, Jean</creatorcontrib><creatorcontrib>Letesson, Jean‐Jacques</creatorcontrib><creatorcontrib>Bolle, Xavier De</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellefontaine, Anne‐Flore</au><au>Pierreux, Christophe E.</au><au>Mertens, Pascal</au><au>Vandenhaute, Jean</au><au>Letesson, Jean‐Jacques</au><au>Bolle, Xavier De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2002-02</date><risdate>2002</risdate><volume>43</volume><issue>4</issue><spage>945</spage><epage>960</epage><pages>945-960</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11929544</pmid><doi>10.1046/j.1365-2958.2002.02777.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2002-02, Vol.43 (4), p.945-960
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_71568357
source MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects Alphaproteobacteria
Bacterial Proteins - genetics
Base Sequence
Brucella abortus
Brucella abortus - genetics
Brucella abortus - metabolism
Caulobacter crescentus
Caulobacter crescentus - genetics
Caulobacter crescentus - metabolism
CtrA protein
Cytoskeletal Proteins
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression Regulation, Bacterial
Genes, Bacterial
Molecular Sequence Data
Phosphorylation
Promoter Regions, Genetic
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Replication Origin
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20of%20a%20transcriptional%20regulation%20network%20among%20alpha%E2%80%90proteobacteria%20is%20supported%20by%20the%20identification%20of%20CtrA%20targets%20in%20Brucella%20abortus&rft.jtitle=Molecular%20microbiology&rft.au=Bellefontaine,%20Anne%E2%80%90Flore&rft.date=2002-02&rft.volume=43&rft.issue=4&rft.spage=945&rft.epage=960&rft.pages=945-960&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2002.02777.x&rft_dat=%3Cproquest_cross%3E124069611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196517523&rft_id=info:pmid/11929544&rfr_iscdi=true