Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus
Summary CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, s...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2002-02, Vol.43 (4), p.945-960 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 960 |
---|---|
container_issue | 4 |
container_start_page | 945 |
container_title | Molecular microbiology |
container_volume | 43 |
creator | Bellefontaine, Anne‐Flore Pierreux, Christophe E. Mertens, Pascal Vandenhaute, Jean Letesson, Jean‐Jacques Bolle, Xavier De |
description | Summary
CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles. |
doi_str_mv | 10.1046/j.1365-2958.2002.02777.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71568357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>124069611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</originalsourceid><addsrcrecordid>eNqNkbtuFDEYRkcIRDaBV0AWBd0Ovozt2YIirCBESgQFSHTWP75svMyOB9ujZDsegYoH5EnwZFcg0UBlWz7f58upKkRwTXAjXm5rwgRf0hVva4oxrTGVUtZ3D6rF742H1QKvOF6yln4-qU5T2mJMGBbscXVCyKogTbOofnzoIWWvfd6j4BCgHGFIOvox-zBAj6LdTD3MCzTYfBviFwS7MGwQ9OMN_Pz2fYwh29CBzjZ6QD6hNI1jiNka1O1RvrHIGztk77w-9JRz1jmeowxxY3NCfkCv46Rt3wOCriSn9KR65KBP9ulxPKs-vX3zcf1uefX-4nJ9frXUjWRy2XAsuW20bExLCaVCMgaUgHbagTTYCAHAqDWdMQ6Ea4Bq7hwGQ3QrCGVn1YtDb3nF18mmrHY-3d9ksGFKShIuWsblP0HSMkJJgwv4_C9wG6ZYfrIwK8GJ5JQVqD1AOoaUonVqjH4Hca8IVrNhtVWzSDWLVLNhdW9Y3ZXos2P_1O2s-RM8Ki3AqwNw63u7_-9idX19Oc_YL9PWuYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196517523</pqid></control><display><type>article</type><title>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bellefontaine, Anne‐Flore ; Pierreux, Christophe E. ; Mertens, Pascal ; Vandenhaute, Jean ; Letesson, Jean‐Jacques ; Bolle, Xavier De</creator><creatorcontrib>Bellefontaine, Anne‐Flore ; Pierreux, Christophe E. ; Mertens, Pascal ; Vandenhaute, Jean ; Letesson, Jean‐Jacques ; Bolle, Xavier De</creatorcontrib><description>Summary
CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2002.02777.x</identifier><identifier>PMID: 11929544</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Alphaproteobacteria ; Bacterial Proteins - genetics ; Base Sequence ; Brucella abortus ; Brucella abortus - genetics ; Brucella abortus - metabolism ; Caulobacter crescentus ; Caulobacter crescentus - genetics ; Caulobacter crescentus - metabolism ; CtrA protein ; Cytoskeletal Proteins ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Molecular Sequence Data ; Phosphorylation ; Promoter Regions, Genetic ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Replication Origin ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular microbiology, 2002-02, Vol.43 (4), p.945-960</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Feb 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</citedby><cites>FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2002.02777.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2002.02777.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11929544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellefontaine, Anne‐Flore</creatorcontrib><creatorcontrib>Pierreux, Christophe E.</creatorcontrib><creatorcontrib>Mertens, Pascal</creatorcontrib><creatorcontrib>Vandenhaute, Jean</creatorcontrib><creatorcontrib>Letesson, Jean‐Jacques</creatorcontrib><creatorcontrib>Bolle, Xavier De</creatorcontrib><title>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.</description><subject>Alphaproteobacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>Brucella abortus</subject><subject>Brucella abortus - genetics</subject><subject>Brucella abortus - metabolism</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - genetics</subject><subject>Caulobacter crescentus - metabolism</subject><subject>CtrA protein</subject><subject>Cytoskeletal Proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial</subject><subject>Molecular Sequence Data</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Replication Origin</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkbtuFDEYRkcIRDaBV0AWBd0Ovozt2YIirCBESgQFSHTWP75svMyOB9ujZDsegYoH5EnwZFcg0UBlWz7f58upKkRwTXAjXm5rwgRf0hVva4oxrTGVUtZ3D6rF742H1QKvOF6yln4-qU5T2mJMGBbscXVCyKogTbOofnzoIWWvfd6j4BCgHGFIOvox-zBAj6LdTD3MCzTYfBviFwS7MGwQ9OMN_Pz2fYwh29CBzjZ6QD6hNI1jiNka1O1RvrHIGztk77w-9JRz1jmeowxxY3NCfkCv46Rt3wOCriSn9KR65KBP9ulxPKs-vX3zcf1uefX-4nJ9frXUjWRy2XAsuW20bExLCaVCMgaUgHbagTTYCAHAqDWdMQ6Ea4Bq7hwGQ3QrCGVn1YtDb3nF18mmrHY-3d9ksGFKShIuWsblP0HSMkJJgwv4_C9wG6ZYfrIwK8GJ5JQVqD1AOoaUonVqjH4Hca8IVrNhtVWzSDWLVLNhdW9Y3ZXos2P_1O2s-RM8Ki3AqwNw63u7_-9idX19Oc_YL9PWuYI</recordid><startdate>200202</startdate><enddate>200202</enddate><creator>Bellefontaine, Anne‐Flore</creator><creator>Pierreux, Christophe E.</creator><creator>Mertens, Pascal</creator><creator>Vandenhaute, Jean</creator><creator>Letesson, Jean‐Jacques</creator><creator>Bolle, Xavier De</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200202</creationdate><title>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</title><author>Bellefontaine, Anne‐Flore ; Pierreux, Christophe E. ; Mertens, Pascal ; Vandenhaute, Jean ; Letesson, Jean‐Jacques ; Bolle, Xavier De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4737-45075e4c74d821226733a21acfcfa7d0d66aa32edbddfa6f4a2c5ff0ad1c86123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alphaproteobacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>Brucella abortus</topic><topic>Brucella abortus - genetics</topic><topic>Brucella abortus - metabolism</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - genetics</topic><topic>Caulobacter crescentus - metabolism</topic><topic>CtrA protein</topic><topic>Cytoskeletal Proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial</topic><topic>Molecular Sequence Data</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Replication Origin</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellefontaine, Anne‐Flore</creatorcontrib><creatorcontrib>Pierreux, Christophe E.</creatorcontrib><creatorcontrib>Mertens, Pascal</creatorcontrib><creatorcontrib>Vandenhaute, Jean</creatorcontrib><creatorcontrib>Letesson, Jean‐Jacques</creatorcontrib><creatorcontrib>Bolle, Xavier De</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellefontaine, Anne‐Flore</au><au>Pierreux, Christophe E.</au><au>Mertens, Pascal</au><au>Vandenhaute, Jean</au><au>Letesson, Jean‐Jacques</au><au>Bolle, Xavier De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2002-02</date><risdate>2002</risdate><volume>43</volume><issue>4</issue><spage>945</spage><epage>960</epage><pages>945-960</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
CtrA is a master response regulator found in many alpha‐proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the α2‐proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6–CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11929544</pmid><doi>10.1046/j.1365-2958.2002.02777.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2002-02, Vol.43 (4), p.945-960 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_71568357 |
source | MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry |
subjects | Alphaproteobacteria Bacterial Proteins - genetics Base Sequence Brucella abortus Brucella abortus - genetics Brucella abortus - metabolism Caulobacter crescentus Caulobacter crescentus - genetics Caulobacter crescentus - metabolism CtrA protein Cytoskeletal Proteins DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene Expression Regulation, Bacterial Genes, Bacterial Molecular Sequence Data Phosphorylation Promoter Regions, Genetic Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Replication Origin Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | Plasticity of a transcriptional regulation network among alpha‐proteobacteria is supported by the identification of CtrA targets in Brucella abortus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20of%20a%20transcriptional%20regulation%20network%20among%20alpha%E2%80%90proteobacteria%20is%20supported%20by%20the%20identification%20of%20CtrA%20targets%20in%20Brucella%20abortus&rft.jtitle=Molecular%20microbiology&rft.au=Bellefontaine,%20Anne%E2%80%90Flore&rft.date=2002-02&rft.volume=43&rft.issue=4&rft.spage=945&rft.epage=960&rft.pages=945-960&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2002.02777.x&rft_dat=%3Cproquest_cross%3E124069611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196517523&rft_id=info:pmid/11929544&rfr_iscdi=true |