Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus

Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2004-01, Vol.335 (2), p.455-464
Hauptverfasser: Johnson, Jennifer M., Willits, Deborah A., Young, Mark J., Zlotnick, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 2
container_start_page 455
container_title Journal of molecular biology
container_volume 335
creator Johnson, Jennifer M.
Willits, Deborah A.
Young, Mark J.
Zlotnick, Adam
description Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.
doi_str_mv 10.1016/j.jmb.2003.10.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71567906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283603013494</els_id><sourcerecordid>19258519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhq0K1C4tD8AF-cQtix3HjqOeVlGBlQpUFLhajj3RepXEW9thteLl8WpX6q2cRjPzzX-YD6F3lCwpoeLjdrkdu2VJCMv9kvDmAi0okU0hBZOv0IKQsixKycQVehPjlhDCWSUv0RWtRF0Kzhfo73pKELRJzk9479IGt3oXncUPwSdwE14NeR_xj28r_JjCbNIcAOvJ4rQB_KDTZq8PuPcBryf826Xg8SpGGLvhgH2PW7_fgcbtZvA5zxn81ac0QCbDHG_Q614PEd6e6zX69enuZ_uluP_-ed2u7gvDJElFyRlj2vCqJLYiNae6klY0mppO1p21QtSS8h7A1nlGSdXIhnKpOTBrDGXsGn045e6Cf5ohJjW6aGAY9AR-jqqmXNQNEf8FaVNyyWmTQXoCTfAxBujVLrhRh4OiRB3VqK3KatRRzXGU1eSb9-fwuRvBPl-cXWTg9gRA_sUfB0FF42AyYF0Ak5T17oX4f-xpnvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19258519</pqid></control><display><type>article</type><title>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Johnson, Jennifer M. ; Willits, Deborah A. ; Young, Mark J. ; Zlotnick, Adam</creator><creatorcontrib>Johnson, Jennifer M. ; Willits, Deborah A. ; Young, Mark J. ; Zlotnick, Adam</creatorcontrib><description>Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2003.10.059</identifier><identifier>PMID: 14672655</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>bromovirus ; Bromovirus - growth &amp; development ; Bromovirus - physiology ; capsid assembly ; Capsid Proteins - analysis ; Capsid Proteins - metabolism ; Cowpea chlorotic mottle virus ; Dimerization ; DNA, Complementary ; Models, Molecular ; Nucleic Acid Conformation ; Plants - virology ; RNA chaperonin ; RNA folding ; RNA, Viral - metabolism ; Signal Transduction ; Viral Proteins - metabolism ; Virus Assembly</subject><ispartof>Journal of molecular biology, 2004-01, Vol.335 (2), p.455-464</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</citedby><cites>FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2003.10.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14672655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Jennifer M.</creatorcontrib><creatorcontrib>Willits, Deborah A.</creatorcontrib><creatorcontrib>Young, Mark J.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><title>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.</description><subject>bromovirus</subject><subject>Bromovirus - growth &amp; development</subject><subject>Bromovirus - physiology</subject><subject>capsid assembly</subject><subject>Capsid Proteins - analysis</subject><subject>Capsid Proteins - metabolism</subject><subject>Cowpea chlorotic mottle virus</subject><subject>Dimerization</subject><subject>DNA, Complementary</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Plants - virology</subject><subject>RNA chaperonin</subject><subject>RNA folding</subject><subject>RNA, Viral - metabolism</subject><subject>Signal Transduction</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Assembly</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhq0K1C4tD8AF-cQtix3HjqOeVlGBlQpUFLhajj3RepXEW9thteLl8WpX6q2cRjPzzX-YD6F3lCwpoeLjdrkdu2VJCMv9kvDmAi0okU0hBZOv0IKQsixKycQVehPjlhDCWSUv0RWtRF0Kzhfo73pKELRJzk9479IGt3oXncUPwSdwE14NeR_xj28r_JjCbNIcAOvJ4rQB_KDTZq8PuPcBryf826Xg8SpGGLvhgH2PW7_fgcbtZvA5zxn81ac0QCbDHG_Q614PEd6e6zX69enuZ_uluP_-ed2u7gvDJElFyRlj2vCqJLYiNae6klY0mppO1p21QtSS8h7A1nlGSdXIhnKpOTBrDGXsGn045e6Cf5ohJjW6aGAY9AR-jqqmXNQNEf8FaVNyyWmTQXoCTfAxBujVLrhRh4OiRB3VqK3KatRRzXGU1eSb9-fwuRvBPl-cXWTg9gRA_sUfB0FF42AyYF0Ak5T17oX4f-xpnvo</recordid><startdate>20040109</startdate><enddate>20040109</enddate><creator>Johnson, Jennifer M.</creator><creator>Willits, Deborah A.</creator><creator>Young, Mark J.</creator><creator>Zlotnick, Adam</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20040109</creationdate><title>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</title><author>Johnson, Jennifer M. ; Willits, Deborah A. ; Young, Mark J. ; Zlotnick, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>bromovirus</topic><topic>Bromovirus - growth &amp; development</topic><topic>Bromovirus - physiology</topic><topic>capsid assembly</topic><topic>Capsid Proteins - analysis</topic><topic>Capsid Proteins - metabolism</topic><topic>Cowpea chlorotic mottle virus</topic><topic>Dimerization</topic><topic>DNA, Complementary</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Plants - virology</topic><topic>RNA chaperonin</topic><topic>RNA folding</topic><topic>RNA, Viral - metabolism</topic><topic>Signal Transduction</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Jennifer M.</creatorcontrib><creatorcontrib>Willits, Deborah A.</creatorcontrib><creatorcontrib>Young, Mark J.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Jennifer M.</au><au>Willits, Deborah A.</au><au>Young, Mark J.</au><au>Zlotnick, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2004-01-09</date><risdate>2004</risdate><volume>335</volume><issue>2</issue><spage>455</spage><epage>464</epage><pages>455-464</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>14672655</pmid><doi>10.1016/j.jmb.2003.10.059</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2004-01, Vol.335 (2), p.455-464
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_71567906
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects bromovirus
Bromovirus - growth & development
Bromovirus - physiology
capsid assembly
Capsid Proteins - analysis
Capsid Proteins - metabolism
Cowpea chlorotic mottle virus
Dimerization
DNA, Complementary
Models, Molecular
Nucleic Acid Conformation
Plants - virology
RNA chaperonin
RNA folding
RNA, Viral - metabolism
Signal Transduction
Viral Proteins - metabolism
Virus Assembly
title Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20with%20Capsid%20Protein%20Alters%20RNA%20Structure%20and%20the%20Pathway%20for%20In%20Vitro%20Assembly%20of%20Cowpea%20Chlorotic%20Mottle%20Virus&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Johnson,%20Jennifer%20M.&rft.date=2004-01-09&rft.volume=335&rft.issue=2&rft.spage=455&rft.epage=464&rft.pages=455-464&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2003.10.059&rft_dat=%3Cproquest_cross%3E19258519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19258519&rft_id=info:pmid/14672655&rft_els_id=S0022283603013494&rfr_iscdi=true