Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus
Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid prote...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2004-01, Vol.335 (2), p.455-464 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 2 |
container_start_page | 455 |
container_title | Journal of molecular biology |
container_volume | 335 |
creator | Johnson, Jennifer M. Willits, Deborah A. Young, Mark J. Zlotnick, Adam |
description | Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the
in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV. |
doi_str_mv | 10.1016/j.jmb.2003.10.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71567906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283603013494</els_id><sourcerecordid>19258519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhq0K1C4tD8AF-cQtix3HjqOeVlGBlQpUFLhajj3RepXEW9thteLl8WpX6q2cRjPzzX-YD6F3lCwpoeLjdrkdu2VJCMv9kvDmAi0okU0hBZOv0IKQsixKycQVehPjlhDCWSUv0RWtRF0Kzhfo73pKELRJzk9479IGt3oXncUPwSdwE14NeR_xj28r_JjCbNIcAOvJ4rQB_KDTZq8PuPcBryf826Xg8SpGGLvhgH2PW7_fgcbtZvA5zxn81ac0QCbDHG_Q614PEd6e6zX69enuZ_uluP_-ed2u7gvDJElFyRlj2vCqJLYiNae6klY0mppO1p21QtSS8h7A1nlGSdXIhnKpOTBrDGXsGn045e6Cf5ohJjW6aGAY9AR-jqqmXNQNEf8FaVNyyWmTQXoCTfAxBujVLrhRh4OiRB3VqK3KatRRzXGU1eSb9-fwuRvBPl-cXWTg9gRA_sUfB0FF42AyYF0Ak5T17oX4f-xpnvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19258519</pqid></control><display><type>article</type><title>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Johnson, Jennifer M. ; Willits, Deborah A. ; Young, Mark J. ; Zlotnick, Adam</creator><creatorcontrib>Johnson, Jennifer M. ; Willits, Deborah A. ; Young, Mark J. ; Zlotnick, Adam</creatorcontrib><description>Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the
in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2003.10.059</identifier><identifier>PMID: 14672655</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>bromovirus ; Bromovirus - growth & development ; Bromovirus - physiology ; capsid assembly ; Capsid Proteins - analysis ; Capsid Proteins - metabolism ; Cowpea chlorotic mottle virus ; Dimerization ; DNA, Complementary ; Models, Molecular ; Nucleic Acid Conformation ; Plants - virology ; RNA chaperonin ; RNA folding ; RNA, Viral - metabolism ; Signal Transduction ; Viral Proteins - metabolism ; Virus Assembly</subject><ispartof>Journal of molecular biology, 2004-01, Vol.335 (2), p.455-464</ispartof><rights>2003 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</citedby><cites>FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2003.10.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14672655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Jennifer M.</creatorcontrib><creatorcontrib>Willits, Deborah A.</creatorcontrib><creatorcontrib>Young, Mark J.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><title>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the
in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.</description><subject>bromovirus</subject><subject>Bromovirus - growth & development</subject><subject>Bromovirus - physiology</subject><subject>capsid assembly</subject><subject>Capsid Proteins - analysis</subject><subject>Capsid Proteins - metabolism</subject><subject>Cowpea chlorotic mottle virus</subject><subject>Dimerization</subject><subject>DNA, Complementary</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Plants - virology</subject><subject>RNA chaperonin</subject><subject>RNA folding</subject><subject>RNA, Viral - metabolism</subject><subject>Signal Transduction</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Assembly</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhq0K1C4tD8AF-cQtix3HjqOeVlGBlQpUFLhajj3RepXEW9thteLl8WpX6q2cRjPzzX-YD6F3lCwpoeLjdrkdu2VJCMv9kvDmAi0okU0hBZOv0IKQsixKycQVehPjlhDCWSUv0RWtRF0Kzhfo73pKELRJzk9479IGt3oXncUPwSdwE14NeR_xj28r_JjCbNIcAOvJ4rQB_KDTZq8PuPcBryf826Xg8SpGGLvhgH2PW7_fgcbtZvA5zxn81ac0QCbDHG_Q614PEd6e6zX69enuZ_uluP_-ed2u7gvDJElFyRlj2vCqJLYiNae6klY0mppO1p21QtSS8h7A1nlGSdXIhnKpOTBrDGXsGn045e6Cf5ohJjW6aGAY9AR-jqqmXNQNEf8FaVNyyWmTQXoCTfAxBujVLrhRh4OiRB3VqK3KatRRzXGU1eSb9-fwuRvBPl-cXWTg9gRA_sUfB0FF42AyYF0Ak5T17oX4f-xpnvo</recordid><startdate>20040109</startdate><enddate>20040109</enddate><creator>Johnson, Jennifer M.</creator><creator>Willits, Deborah A.</creator><creator>Young, Mark J.</creator><creator>Zlotnick, Adam</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20040109</creationdate><title>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</title><author>Johnson, Jennifer M. ; Willits, Deborah A. ; Young, Mark J. ; Zlotnick, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-25333ac5420d40751a48d69a1cb87bdd667815feed7a1c104989158a5e3dcc133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>bromovirus</topic><topic>Bromovirus - growth & development</topic><topic>Bromovirus - physiology</topic><topic>capsid assembly</topic><topic>Capsid Proteins - analysis</topic><topic>Capsid Proteins - metabolism</topic><topic>Cowpea chlorotic mottle virus</topic><topic>Dimerization</topic><topic>DNA, Complementary</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Plants - virology</topic><topic>RNA chaperonin</topic><topic>RNA folding</topic><topic>RNA, Viral - metabolism</topic><topic>Signal Transduction</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Jennifer M.</creatorcontrib><creatorcontrib>Willits, Deborah A.</creatorcontrib><creatorcontrib>Young, Mark J.</creatorcontrib><creatorcontrib>Zlotnick, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Jennifer M.</au><au>Willits, Deborah A.</au><au>Young, Mark J.</au><au>Zlotnick, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2004-01-09</date><risdate>2004</risdate><volume>335</volume><issue>2</issue><spage>455</spage><epage>464</epage><pages>455-464</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the
in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the “labeled” nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>14672655</pmid><doi>10.1016/j.jmb.2003.10.059</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2004-01, Vol.335 (2), p.455-464 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_71567906 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | bromovirus Bromovirus - growth & development Bromovirus - physiology capsid assembly Capsid Proteins - analysis Capsid Proteins - metabolism Cowpea chlorotic mottle virus Dimerization DNA, Complementary Models, Molecular Nucleic Acid Conformation Plants - virology RNA chaperonin RNA folding RNA, Viral - metabolism Signal Transduction Viral Proteins - metabolism Virus Assembly |
title | Interaction with Capsid Protein Alters RNA Structure and the Pathway for In Vitro Assembly of Cowpea Chlorotic Mottle Virus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20with%20Capsid%20Protein%20Alters%20RNA%20Structure%20and%20the%20Pathway%20for%20In%20Vitro%20Assembly%20of%20Cowpea%20Chlorotic%20Mottle%20Virus&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Johnson,%20Jennifer%20M.&rft.date=2004-01-09&rft.volume=335&rft.issue=2&rft.spage=455&rft.epage=464&rft.pages=455-464&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2003.10.059&rft_dat=%3Cproquest_cross%3E19258519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19258519&rft_id=info:pmid/14672655&rft_els_id=S0022283603013494&rfr_iscdi=true |